MWR

WA

Security Advisory

Mi1crosoft Office
Protected-View Out-0Of-
Bound Array Access

2017-11-23

Software Microsoft Office

Affected Versions Microsoft Excel 2010, 2013, 2016 (x86 and x64)

CVE Reference CVE-2017-8692 (Uniscribe Remote Code Execution
Vulnerability)

Author Yong Chuan Koh (@yongchuank)

Severity Important

Vendor Microsoft Corporation

vendor Response Fixed on 12 Sept 2017

Description:

Microsoft Office is a suite of desktop applications consisting of Word, Excel, Powerpoint, Outlook and
various other productivity applications. Among these, Word, Excel and Powerpoint implemented the
Protected-View sandbox technology as a defence-in-depth exploit mitigation.

An out-of-bound array access was discovered while the Excel broker parsed an attacker controlled
Protected-View Inter-Process Communication (IPC) message from the sandbox process.

Impact:

A successful exploitation would allow an attacker to elevate his privileges from AppContainer to
Medium, thereby breaking out of the Protected-View sandbox.

Tabs.mwrinfosecurity.com // @mwrlabs

MWR

WA

Security Advisory

Cause:

The vulnerability existed because as the broker process looped through an array of SCRIPT_ITEM

objects, it dereferences the current (N) and next (N+1) SCRIPT_ITEM objects to calculate the difference of
iCharPos value between these two objects. However, if N is the last SCRIPT_ITEM object, then an out-of-
bound dereference for the N+1 object would occur.

Interim workaround:

Avoid opening Microsoft Office Excel files from untrusted sources.

Solution:

Users should apply the September security updates from Microsoft.

Technical details

The following analysis is based on EXCEL 16.0.4266.1001.

In Protected-View mode, the EXCEL broker receives and services IPC messages from the Excel sandbox,
distinguished by a message-tag. One of these messages has the 0x071200 tag, which the sandbox uses
to request the broker to input a specified string into the formula bar as it is isolated from the
AppContainer. Subsequently, the Excel broker would process the formula-bar string with
gdi32full!Scriptltemize().

This POC formula-bar string is sent to Excel broker with the 0x071200 IPC message:

2087 "'&1 :bCWX4 [tcY$=D~W@vJ } MpMr<ijSar<#9<0trX_S7j\ldH"?qF>!uMnO>(qg-j(@-

g?Mcav)MzM_<m-+T[zA46ykI#V5\2Kj | 42

Upon receipt, Excel would transform the string into an array of SCRIPT_ITEM objects with the following
sequence of calls to gdi32full!Scriptitemize().

ScriptItemize (
pwcInChars =
L"?205""'&1:bCWX4 [tcY%$=D~WAvJ }MpMr<ijSar<#9<O0trX S7j\1dH"?gF>!uMnO> (g-j (@-

g?Mcav)MzM <m+T[zA46ykI#V5\2K]j|42"
cInChars = 0x00000021
cMaxItems = 0x00000022

Tabs.mwrinfosecurity.com // @mwrlabs

MWR

WA

Security Advisory

psControl = & (0x00800009)
psState = & (0x0001)
pltems

pcltems

)
ScriptItemize (
pwcInChars = L"Sar
g?Mcav)MzM <m+T [zA46ykI#V5\2K] 42"
cInChars = 0x00000021
cMaxItems = 0x00000022
psControl = & (0x00800009)
psState = & (0x0001)
pltems
pcltems

)
ScriptItemize (
pwcInChars = L"j(@-g?Mcav)MzM <m+T[zA46ykI#V5\2K]j|42"

/

cInChars = 0x00000004
cMaxItems = 0x00000005
psControl = & (0x00800009)
psState = &(0x0001)
pltems

pcltems

As the out-of-bound dereference occurred in the last call to gdi32full!Scriptltemize() on the p/tems
output buffer, we next examine how it was allocated. After some reversing, the buffer was found to be
allocated in Mso99Lwin32client!sub_B6899(), together with an assignment of the cMax/tems parameter.
The snippet below shows the relevant blocks of this allocation.

Tabs.mwrinfosecurity.com // @mwrlabs

Security Advisory

= (=

5A25690A

5A25690A l1loc_ S5A25690A: 5

SAZ25690A lea eax, [ebps*chaxItems] ; at this point, esi = cHMaxItems = cInChars
5A256968D push eax

S5A2569260E push esi s cInChars

5A2569068F call CopyArguments

5A256914 and [ebpruar 381, 8

5A256918 lea eax, [ebpsruar_ 38]

5A25691B push eax

5A25691C 1lea eax, [ebpsruar_ 3C]

SA25691F mou [ebp+uar_ 3C], 4

5A256926 push eax

5A256927 lea eax, [ebprcHaxItems]

5A25692A push eax

S5SA25692B call MultiplyArguments

5A2569368 mou eax, [ebpsuar_ 38] ; wvar_38 = cHMaxItems 3 4 = L

5A256933 and [ebp+uar_ 381, ©

5A256937 mou [ebp+rciMaxItems], eax ; cHaxItems = 18h

5A25693A lea eax, [ebp+*uar_ 38]

5A25693D push eax

S5SA25693E lea eax, [ebpruvar_ 3C]

5A256941 movu [ebpruayr_3C], 3

5A256948 push eax

5A2569249 lea eax, [ebps*cHaxItems]

5A25694C push eax

5A25694D call MultipluArgBAargh

5A256952 mou eax, [ebpruvar_ 38] ; wvar_38 = cHaxItems 3> 83h 18h » 83h = 368h
5A256955 push 2

5A256957 pop ecx

5A256958 mou [ebp*+uar_ 3C], eax ; wvar_3C = wvar_38 =

5A25695B l1lea eax, [esis+1] s eax = cInChars =

S5A256925E cmp eax, ecx
5A2569608 push 8
5A256962 cmoug ecx, eax
5A256962

5A256962

5A256962

5A256965 eax, [ebp*ruar_ 489
5A256968 ecx
5A256969 eax
5A25696A [ebprcHMaxItems], ecx

5A25696D MultiplyArgB8Aargi Wrapper

5A256972 ecx, [ebpsuvar_ 3C] s [ecx] = wvar_3C = 36h

5A256975 dword ptyr [eax] ; [eax] = cHaxItems 2> 68h

S5A256977 eax, [ebprdwBufferSize]

5A25697A eax

5A256978 AddArguments Wrapper

5A256980 [ebp+ppBuffer]

5A256983 dword ptyr [eax] ; [eax] = dwHeapAllocSize 28h = 36h 58h
5A256985 HeapAlloc_ Wrapper

5A25698A eax, eax 35 ———> this buffer = [unknown_ buffer]+[pclitems_buffer]
5A25698C loc_5A256AD1

{cInChars—+
{cInChars—+
chMaxChars

TR

ol = (5=

S5A256992 [ebprdwBufferSize]
5A256995

S5A256996

5A256997 CopyArguments
5A25699C [ebp+uvar_38], 8
5A2569A0 28h

SA2569A2 eax

SA2569A3 [ebpsruar 3C], eax
S5A2569A6 eax, [ebpruvar_ 38]
5A2569A9 eax

5A2569AA eax, [ebpruvar_3C]
5A2569AD

S5SA2569AE [ebprdwBufferSize]
5A2569B1

5A2569B2 MultiplyArguments
SA2569B7 [ebp+arg 3a]
SA2569BA [ebp+uar_ 38]
5A2569BD HeapAlloc_ Wrapper
SA2569C2 [ebp+uar_3C], eax
SAZ2569CS eax, eax

5A2569C7 eax, [ebps+ppBuffer]
5A2569CA loc_SAZ265553

ol =) (5=

5A2569D06 ecx, [eax] ecx = pBuffer

SA2569D2 eax, [ecx+esix»x8] ; esi = cInChars = &
SAZ2569DS [ebp+uar_C]., eax I

SAZ2569D8 edx, [ecx+esixh]

SA2569DB eax, esi, 6Ch s eax cInChars»xagxC

SA2569DE [ebpruar_ 14], edx pB € X % 3
SAZ2569E1 eax, ecx s eax pBuffer={(cInChars+68xC)
SA2569E1 s plItems
SA2569E3 ecx, [ebp*ppltems]

SAZ2S69E6 [ecx]., eax

SAZ2569ES eax, [ebpr+arg 58]

SAZ2S569EB eax, eax

SA2569ED short loc_SA2569F1

Figure 1: Snippet in Mso99Lwin32client!sub_B6899(), to allocate pltems buffer

Tabs.mwrinfosecurity.com // @mwrlabs

LABS

Security Advisory

In the above snippet, at Mso99Lwin32client!000B6962 with a c/nChars value of 4, the cMax/tems
parameter is determined by the following:

o cMaxChars = cInChars > 2 ? (c/nChars+1) : 2
Next, in the code-block Excel allocates a buffer (pBuffer) of 58h bytes consisting of these 2 sub-buffers:

e Size of Unknown-SubBuffer = c/nChars = 4 * 3
= 30h bytes

e Size of pltems-SubBuffer = (cMax/tems) * sizeof(SCRIPT_ITEM)
= (cMaxltems) * 8
= 28h bytes

Eventually a pointer to p/tems is obtained from pBuffer.

o pltems = pBuffer + (c/nChars * 0xC)
= pBuffer + (c/InChars * 3 * 4)

Finally, back in gdi32full!Scriptitemize(), it was observed that it called gdi32full!ScriptTokenize() to write
c/nChars number of SCRIPT_ITEM structures retrieved from the pwc/nChars parameter to the p/tems
buffer. The last SCRIPT_ITEM (ie: cMax/tems-th) object is then used to “summarize” the number of
tokenized characters with the flag 3.

o pltems [cInChars] = pltems [cMax/tems-1]
= SCRIPT_ITEM {
int iCharPos = c/nChars,
SCRIPT_ANALYSIS a {
WORD wdWord1 = 0,
SCRIPT_STATE s =3 //SCRIPT_STATE.fEngineReserved

}
The snippet below shows the code-blocks where the last SCRIPT_ITEM object is written:

Tabs.mwrinfosecurity.com // @mwrlabs

MWR

WA

Security Advisory

T430B0CE nov esi, [ebpeciiaxltens]

4308001 cop s, 2
74308004 i1 Toc_7433083A

743080DA 1ea edx, [esp3fh+var 18] ; OUT.

T430B0DE push edy ; int

T430BDDF push edi ; pltens

T430BDEQ push [ebpeconst NULL] ; int

T430BDES mov edx, eax

T430BDES push esi ; nt chaxItens

T430BDEG call ?ScriptTokenize@GYGJPB WHHHPAUTOKENGGPAKGZ ;
T430BDEB mov ecx, [esp+dfh+var 18 0

TU30BDEF cmp ecx, esi

THOBOF1 jge loc_74330ote

ebx, [ebp#psControl]
esi, [editecks8] ; edi = pltens
; esi = (SCRIPT_ITEHx)(pltens+cInChars)
eck, [esp+3dh+cinChars]
TU30BECT mov [esi], eck
T430BEG3 nov ecx, 8
TU30BE08 mov [esith], cx
T430BEOC test ebx, ebx
T4I0BEGE jz short loc_7A36BEGT

Figure 2: Snippet in gdi32full!ScriptitemizeCommon(), to populate pltems buffer

The populated p/tems buffer is then parsed into a loop in gdi32fulllFindMatchingPair(), which is
represented by the following pseudo-code:

int stdcall FindMatchingPair (SCRIPT ITEM **

SCRIPT ITEM *

SCRIPT ITEM* var 10;

if (* <

var 10 = * 5

int iCharPosOfCurrScriptItem (var_10 + 0)->iCharPos;

int iCharPosOfNextScriptItem = (var 10 + 1)->iCharPos; //OOB Deref

int edx = iCharPosOfNextScriptItem - iCharPosOfCurrScriptItem;

Tabs.mwrinfosecurity.com // @mwrlabs

W

Security Advisory

if (var 10->a.eScript > 0x114)

else if (var 10->a.eScript == 0x114)

else
(*)+

} while (* <=

In this do-while loop, the p/tems pointer is incremented until the last SCRIPT_ITEM object. However in
the loop, the next SCRIPT_ITEM object is also dereferenced. Therefore this causes an out-of-bound
dereference when p/tem points to the last SCRIPT_ITEM object.

The following windbg output show below demonstrates the crash:

Tabs.mwrinfosecurity.com // @mwrlabs

MWR

WA

Security Advisory

violation - code
64£2f

found in
11000
DPH_HEAP_B
4

frames may be wrong

orporation
ffice 2016

Figure 3: windbg output of Out-of-Bound SCRIPT_ITEM buffer dereference

In conclusion, the root-cause of this bug is the insufficiently-sized p/tems buffer that Excel (or
Mso99Lwin32client) allocates for Scriptltemize(). This is probably due to the developers’ oversight when

Tabs.mwrinfosecurity.com // @mwrlabs

MWR

WA

Security Advisory

reading the documentation for the Scriptitemize() function. From MSDN', the cMax/tems and pltems
parameters are described as such:

cInChars [in]
Number of characters in pwclnChars to itemize.
cMaxltems [in]

Maximum number of SCRIPT_ITEM structures defining items to process.

pltems [out]

Pointer to a buffer in which the function retrieves SCRIPT_ITEM structures representing the items
that have been processed. The buffer should be (cMaxItems + 1) *

sizeof (SCRIPT ITEM) bytes in length. It is invalid to call this function with a buffer to hold
less than two SCRIPT_ITEM structures. The function always adds a terminal item to the item
analysis array so that the length of the item with zero-based index "i" is always available as:

pltems[i+1].iCharPos - pltems[i].iCharPos;

The developers probably noted that since cMax/tems is the maximum number of SCRIPT_ITEM structures
to process, they allocated the p/tems buffer to only cMax/tems structures where in fact, it should have
cMaxltems+1.

On 12 Sept 2017, Microsoft identified this vulnerability as a “Uniscribe Remote Code Execution
Vulnerability”, and listed Windows 8, Windows 10, Windows Server 2012 and Windows Server 2016 as
affected products. So this vulnerability should have been patched in gdi32.dll (at the root-cause) instead
of Excel.

Tabs.mwrinfosecurity.com // @mwrlabs

https://msdn.microsoft.com/en-us/library/windows/desktop/dd374039(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd374039(v=vs.85).aspx

MWR

WA

Security Advisory

Detailed Timeline

Date

2017-05-22

2017-05-22

2017-05-23

2017-05-23

2017-08-04

2017-09-12

2017-11-23

Summary

MWR Labs reported vulnerability and POC to MSRC

MSRC acknowledged and opened case 38823

MSRC responded that the team could not reproduce the issue

MWR Labs sent crash dump to MSRC

MSRC responded that this will be patched in September 2017

MSRC assigned CVE-2017-8692 and released patch for this vulnerability

MWR Labs released advisory

Tabs.mwrinfosecurity.com // @mwrlabs

