

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
1

Microsoft Office
Protected-View Out-Of-
Bound Array Access
2017-11-23

Software Microsoft Office

Affected Versions Microsoft Excel 2010, 2013, 2016 (x86 and x64)

CVE Reference CVE-2017-8692 (Uniscribe Remote Code Execution

Vulnerability)

Author Yong Chuan Koh (@yongchuank)

Severity Important

Vendor Microsoft Corporation

Vendor Response Fixed on 12 Sept 2017

Description:

Microsoft Office is a suite of desktop applications consisting of Word, Excel, Powerpoint, Outlook and

various other productivity applications. Among these, Word, Excel and Powerpoint implemented the

Protected-View sandbox technology as a defence-in-depth exploit mitigation.

An out-of-bound array access was discovered while the Excel broker parsed an attacker controlled

Protected-View Inter-Process Communication (IPC) message from the sandbox process.

Impact:

A successful exploitation would allow an attacker to elevate his privileges from AppContainer to

Medium, thereby breaking out of the Protected-View sandbox.

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
2

Cause:

The vulnerability existed because as the broker process looped through an array of SCRIPT_ITEM

objects, it dereferences the current (N) and next (N+1) SCRIPT_ITEM objects to calculate the difference of

iCharPos value between these two objects. However, if N is the last SCRIPT_ITEM object, then an out-of-

bound dereference for the N+1 object would occur.

Interim Workaround:

Avoid opening Microsoft Office Excel files from untrusted sources.

Solution:

Users should apply the September security updates from Microsoft.

Technical details

The following analysis is based on EXCEL 16.0.4266.1001.

In Protected-View mode, the EXCEL broker receives and services IPC messages from the Excel sandbox,

distinguished by a message-tag. One of these messages has the 0x071200 tag, which the sandbox uses

to request the broker to input a specified string into the formula bar as it is isolated from the

AppContainer. Subsequently, the Excel broker would process the formula-bar string with

gdi32full!ScriptItemize().

This POC formula-bar string is sent to Excel broker with the 0x071200 IPC message:

?0S^'&1:bCWX4[tcY%=D~W@vJ}MpMr<ijSar<#9<OtrX_S7j\ldH"?qF>!uMnO>(q-j(@-

g?Mcav)MzM_<m+T[zA46ykI#V5\2Kj|42

Upon receipt, Excel would transform the string into an array of SCRIPT_ITEM objects with the following

sequence of calls to gdi32full!ScriptItemize().

ScriptItemize (

- pwcInChars =

L"?0S^'&1:bCWX4[tcY%=D~W@vJ}MpMr<ijSar<#9<OtrX_S7j\ldH"?qF>!uMnO>(q-j(@-

g?Mcav)MzM_<m+T[zA46ykI#V5\2Kj|42"

- cInChars = 0x00000021

- cMaxItems = 0x00000022

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
3

- psControl = &(0x00800009)

- psState = &(0x0001)

- pItems

- pcItems

)

ScriptItemize (

- pwcInChars = L"Sar<#9<OtrX_S7j\ldH"?qF>!uMnO>(q-j(@-

g?Mcav)MzM_<m+T[zA46ykI#V5\2Kj|42"

- cInChars = 0x00000021

- cMaxItems = 0x00000022

- psControl = &(0x00800009)

- psState = &(0x0001)

- pItems

- pcItems

)

ScriptItemize (

- pwcInChars = L"j(@-g?Mcav)MzM_<m+T[zA46ykI#V5\2Kj|42"

- cInChars = 0x00000004

- cMaxItems = 0x00000005

- psControl = &(0x00800009)

- psState = &(0x0001)

- pItems

- pcItems

)

As the out-of-bound dereference occurred in the last call to gdi32full!ScriptItemize() on the pItems

output buffer, we next examine how it was allocated. After some reversing, the buffer was found to be

allocated in Mso99Lwin32client!sub_B6899(), together with an assignment of the cMaxItems parameter.

The snippet below shows the relevant blocks of this allocation.

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
4

Figure 1: Snippet in Mso99Lwin32client!sub_B6899(), to allocate pItems buffer

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
5

In the above snippet, at Mso99Lwin32client!000B6962 with a cInChars value of 4, the cMaxItems

parameter is determined by the following:

 cMaxChars = cInChars > 2 ? (cInChars+1) : 2

Next, in the code-block Excel allocates a buffer (pBuffer) of 58h bytes consisting of these 2 sub-buffers:

 Size of Unknown-SubBuffer = cInChars * 4 * 3

 = 30h bytes

 Size of pItems-SubBuffer = (cMaxItems) * sizeof(SCRIPT_ITEM)

 = (cMaxItems) * 8

 = 28h bytes

Eventually a pointer to pItems is obtained from pBuffer:

 pItems = pBuffer + (cInChars * 0xC)

 = pBuffer + (cInChars * 3 * 4)

Finally, back in gdi32full!ScriptItemize(), it was observed that it called gdi32full!ScriptTokenize() to write

cInChars number of SCRIPT_ITEM structures retrieved from the pwcInChars parameter to the pItems

buffer. The last SCRIPT_ITEM (ie: cMaxItems-th) object is then used to “summarize” the number of

tokenized characters with the flag 3.

 pItems [cInChars] = pItems [cMaxItems-1]

 = SCRIPT_ITEM {

int iCharPos = cInChars,

SCRIPT_ANALYSIS a {

WORD wdWord1 = 0,

SCRIPT_STATE s = 3 //SCRIPT_STATE.fEngineReserved

 }

 }

The snippet below shows the code-blocks where the last SCRIPT_ITEM object is written:

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
6

Figure 2: Snippet in gdi32full!ScriptItemizeCommon(), to populate pItems buffer

The populated pItems buffer is then parsed into a loop in gdi32full!FindMatchingPair(), which is

represented by the following pseudo-code:

int __stdcall FindMatchingPair(SCRIPT_ITEM **ppItems,

 SCRIPT_ITEM *pItems_LastItem, ...)

{

. . .

SCRIPT_ITEM* var_10;

if (*ppItems < pItems_LastItem) {

 do {

 var_10 = *ppItems;

 int iCharPosOfCurrScriptItem = (var_10 + 0)->iCharPos;

 int iCharPosOfNextScriptItem = (var_10 + 1)->iCharPos; //OOB Deref

 int edx = iCharPosOfNextScriptItem - iCharPosOfCurrScriptItem;

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
7

 if (var_10->a.eScript > 0x114) { ... }

 else if (var_10->a.eScript == 0x114) { ... }

 else { ... }

 (*ppItems)++;

 } while (*ppItems <= pItems_LastItem);

}

. . .

}

In this do-while loop, the pItems pointer is incremented until the last SCRIPT_ITEM object. However in

the loop, the next SCRIPT_ITEM object is also dereferenced. Therefore this causes an out-of-bound

dereference when pItem points to the last SCRIPT_ITEM object.

The following windbg output show below demonstrates the crash:

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
8

Figure 3: windbg output of Out-of-Bound SCRIPT_ITEM buffer dereference

In conclusion, the root-cause of this bug is the insufficiently-sized pItems buffer that Excel (or

Mso99Lwin32client) allocates for ScriptItemize(). This is probably due to the developers’ oversight when

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
9

reading the documentation for the ScriptItemize() function. From MSDN1, the cMaxItems and pItems

parameters are described as such:

...

cInChars [in]

Number of characters in pwcInChars to itemize.

cMaxItems [in]

Maximum number of SCRIPT_ITEM structures defining items to process.

...

pItems [out]

Pointer to a buffer in which the function retrieves SCRIPT_ITEM structures representing the items

that have been processed. The buffer should be (cMaxItems + 1) *

sizeof(SCRIPT_ITEM) bytes in length. It is invalid to call this function with a buffer to hold

less than two SCRIPT_ITEM structures. The function always adds a terminal item to the item

analysis array so that the length of the item with zero-based index "i" is always available as:

pItems[i+1].iCharPos - pItems[i].iCharPos;

The developers probably noted that since cMaxItems is the maximum number of SCRIPT_ITEM structures

to process, they allocated the pItems buffer to only cMaxItems structures where in fact, it should have

cMaxItems+1.

On 12 Sept 2017, Microsoft identified this vulnerability as a “Uniscribe Remote Code Execution

Vulnerability”, and listed Windows 8, Windows 10, Windows Server 2012 and Windows Server 2016 as

affected products. So this vulnerability should have been patched in gdi32.dll (at the root-cause) instead

of Excel.

1 ScriptItemize function: https://msdn.microsoft.com/en-us/library/windows/desktop/dd368556(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/dd374039(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd374039(v=vs.85).aspx

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
10

Detailed Timeline

Date Summary

2017-05-22 MWR Labs reported vulnerability and POC to MSRC

2017-05-22 MSRC acknowledged and opened case 38823

2017-05-23 MSRC responded that the team could not reproduce the issue

2017-05-23 MWR Labs sent crash dump to MSRC

2017-08-04 MSRC responded that this will be patched in September 2017

2017-09-12 MSRC assigned CVE-2017-8692 and released patch for this vulnerability

2017-11-23 MWR Labs released advisory

