
 Contents

2009-05-07 Page 1 of 12
© MWR InfoSecurity

HashCookies –
A Simple Recipe

J. Fitzpatrick

7th May 2009

 Contents

2009-05-07 Page 2 of 12
© MWR InfoSecurity

Contents

1 Abstract .. 3

2 Introduction ... 4

3 Implementation .. 5

3.1 Client Implementation .. 5

3.2 Server Implementation .. 7

4 Security Benefits of HashCookies ... 9

5 Considerations .. 10

6 Summary and Future Work .. 11

 Abstract

2009-05-07 Page 3 of 12
© MWR InfoSecurity

1 Abstract

Since HTTP is stateless it utilises sessions in order to track a user’s state when using web
based applications. Several vectors exist which could permit an attacker to gain access to a
user’s session resulting in the compromise of the user’s account or other sensitive
information. The use of a changing and expiring session ID can enable a user’s session to be
protected from a number of attacks. By transmitting a random salt to a web browser the web
browser is able to use this salt in order to generate a new cookie by hashing information
which only the web browser and web server know; this cookie is a HashCookie. Provided the
salt is protected during the initial exchange, or an attacker is not in a position to intercept this
communication, then in all instances even if an attacker is able to obtain a valid session ID
for a user of a web based application the use of HashCookies would provide them no
leverage over the user’s session. Implementation requires HashCookie support from both the
web browser and web server.

 Introduction

2009-05-07 Page 4 of 12
© MWR InfoSecurity

2 Introduction

Session hijacking is a risk faced by users of web based applications. A variety of vectors exist
which could be exploited to expose users’ session IDs and so provide an attacker with full
access to those users’ sessions. These vectors include Cross Site Scripting (XSS), session
fixation, weak session identifiers and any clear text transmission of session identifiers.

Equally however, methods are available to help prevent session hijacking attacks succeeding;
for example, the SecureSessionModule within the ASP.NET framework mitigates the risk of
session hijacking somewhat by tying a session ID to an IP address, or rather to a network
range. This prevents a session ID being used by an attacker, unless the attacker was able to
send requests which originated from the targeted user’s IP address range. The extensive use of
NAT and proxies in current environments means that this is not a safe assumption to make.
The need to bind a session ID to a network range rather than a single IP address (in order to
accommodate instances when traffic is load balanced and so switches between IP addresses)
increases the surface area for successful attacks. HashCookies ensure that even when an IP
address changes a session to the web application can still be maintained.

Setting a new cookie after each request can be used to prevent an attacker who has been able
to recover a previously used session ID from hijacking the session to which it corresponds.
However, an attacker who was able to obtain a valid session would still be able to exploit
this functionality in order to hijack the session and render it unusable by the legitimate user. It
would simply be a race between the user and the attacker to use the session ID first.

HashCookies address the issues described above, although their implementation would place
additional requirements upon both the web browser and the web server.

If session cookies are constantly changing, an attacker who was able to intercept a session ID
by whatever means would not be able to use it in order to hijack a session. Obtaining a
session ID through XSS, for example, would only provide the attacker with the session ID
which had been used to identify the user on their last request to the web server. Since this has
already been used it would no longer be valid and so will be of no use to an attacker seeking
to gain access to a user’s session.

 Implementation

2009-05-07 Page 5 of 12
© MWR InfoSecurity

3 Implementation

HashCookies make use of three values:

• Session ID – this is a static value which identifies a user in the same manner that a

traditional session ID would identify a user.

• Salt – this is a secret value which should be known only by the client and the server. It is
used to generate IDs which are not known to any other party.

• Sequence number – since web browsers are capable of making multiple requests to a web
server these may arrive out of order and so it is important that the web server knows the
correct order of requests.

The three values described above are used by the web browser in order to generate a
HashCookie.

3.1 Client Implementation

In order to identify to a web server that a browser supports HashCookies it will specify this in
the Accept section of the HTTP header used in a HTTP request:

GET / HTTP/1.0
Host: www.mwrinfosecurity.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-GB; rv:1.9.0.3) Gecko/2008092816
Firefox/2.0.0.6 (Debian-3.0.3-3)
Accept: text/html,application/xml;q=0.9,*/*;q=0.8,hash-cookie
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive

On receiving the request the server will set the appropriate cookie as usual, however, will
add an additional flag which contains the salt to be used by the HashCookie:

HTTP/1.1 200 OK
Date: Thu, 04 Dec 2008 17:37:29 GMT
Server: server
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Set-Cookie: SESSION=cb58609ecb4b8f5b4fd1235c7bd60aeb; path=/; HttpOnly;
salt=ea043ecb41517205154ddf8c658b6d0961c17fe3
Pragma: no-cache
Content-Length: 4347
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html

Ideally, the exchange of the salt should be performed over an SSL channel in order to ensure
maximum security. However, even if SSL were not used for this exchange, HashCookies
would still provide protection from session hijacking attacks which do not depend on the
capture of clear text traffic from the network. It is vital for the security of HashCookies that the
salt should be of a length that cannot feasibly be determined through brute forcing. During
communication the sequence number will be exposed and so should be considered to be
known by any attacker.

http://www.mwrinfosecurity.com

 Implementation

2009-05-07 Page 6 of 12
© MWR InfoSecurity

When a client receives the session ID and the salt they can use the SHA-1 algorithm to hash
the salt, current session ID and the sequence number in order to generate a HashCookie
which can then be used in the next request.

hashCookie = sha1(currentSessionID+salt+sequenceNumber)

The subsequent request utilising HashCookies would appear as shown in the following
request:

GET /nextPage.mwr HTTP/1.0
Host: www.mwrinfosecurity.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-GB; rv:1.9.0.3) Gecko/2008092816
Firefox/2.0.0.6 (Debian-3.0.3-3)
Accept: text/html,application/xml;q=0.9,*/*;q=0.8,hash-cookie
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Cookie: SESSION=cb58609ecb4b8f5b4fd1235c7bd60aeb-
a29befed094761ea3dfa9e9de164b5fdfbc7d6a9-1

As soon as a HashCookie has been used any future requests which use the same HashCookie
should be rejected by the web server. If this is not the case then the use of HashCookies will
offer no additional security benefits over a standard session ID.

Since a web browser may make multiple concurrent requests to a web server these may
arrive out of order and it is therefore important that HashCookies can handle this. The
solution proposed for this is to pass the sequence number in addition to the session ID and
HashCookie (the final “-1” as shown in the output above). This will allow the HashCookies to
be associated with the sequence number which was used to construct them. It will also then
be possible to specify a window of valid sequence numbers; a sequence number would then
need to be within this window in order to be accepted by the server.

The reason for transmitting both the initial session ID and the HashCookie (rather than using
solely the HashCookie as the session ID) is twofold. Firstly, as nothing changes in the initial
session ID, this simplifies session identification; all lookups of HashCookie data can simply
be performed against the session ID which could now be treated as a form of key field.
Secondly, it would be highly inefficient to rotate the session ID each time as this would
require the server to compute the next expected cookie values for every request. This could
lead to a collision between HashCookies, although it is acknowledged that this would be
improbable. Identifying sessions would become further complicated when multiple
concurrent requests need to be considered and a lookup based on the information provided
would quickly prove to be not only an unnecessarily expensive task, but one which could
potentially lead to the inadvertent hijacking of a user’s session should a collision occur.
Although this is considered an unlikely occurrence, as it would introduce the potential for the
very vulnerability which HashCookies attempt to mitigate, the risk is considered
unacceptable. The use of a static session ID is therefore considered essential the
implementation.

http://www.mwrinfosecurity.com

 Implementation

2009-05-07 Page 7 of 12
© MWR InfoSecurity

3.2 Server Implementation

Appropriate configurations settings will need to be applied server side when HashCookies are
in use. For instance, it will be necessary to define what action is taken for a user session if an
invalid HashCookie is passed: should the session be terminated, or should the request simply
be ignored? Terminating a session because a session ID had been replayed would add to the
security of an application but could in some instances cause issues if an old request was
replayed. Additionally, legitimate requests arriving out of order should be accepted rather
than rejected. A representation of how memory could be managed with regards to
HashCookies is given below:

Figure 1HashCookies Memory Layout

In this model, each session ID has a window of HashCookies associated with it, as shown by
the red, blue and green shaded area of the diagram. When a request is made to a server the
available HashCookies section of the HashCookies window associated with that session ID
would be consulted. If the HashCookie presented in the HTTP request falls within the
available section of this window, then the request is honoured. The Next HashCookie pointer
then increments to point to the HashCookie with sequence number one greater than the
HashCookie just used and the just used HashCookie is removed from the window
completely. Any HashCookies in the Available window with a sequence number less than
that of the HashCookie just used are moved to the unused HashCookies section of the
window. If the unused section is full the oldest HashCookie is removed. Unused
HashCookies are therefore any HashCookies which have not yet been used by the client and
whose sequence number is less than that of the Next HashCookie.

For example, if the Next HashCookie used had sequence number 26 then the HashCookie
associated with sequence number 26 would be removed from the window so that it could not
be used again. HashCookies 25 and 24 would then be shifted into the unused HashCookies
container and HashCookie 27 set as the Next HashCookie. The request would then be
honoured and any response returned.

It is important for the security of this model that the size of the unused HashCookies container
and the number of available HashCookies are clearly defined. In addition, the permitted
variance in sequence number either side of the next sequence number must also be explicitly
set. This should be no more than the size of the unused and available HashCookies
containers respectively. Consequently, a check will be required to ensure that the variance
between the Next HashCookie value and the presented HashCookie value falls within these
parameters for every request received.

 Implementation

2009-05-07 Page 8 of 12
© MWR InfoSecurity

If the HashCookie presented is not found in the Available HashCookies section of the
window then the Unused HashCookies section is consulted. Unused HashCookies are also
honoured, but there are differences in operation if an unused HashCookie is received. In such
cases, no change to the Next HashCookie pointer occurs and so no HashCookies are added
to the unused HashCookies container. The HashCookie which has just been used is still
removed from the window so that it cannot be reused. In the diagram above the HashCookies
with sequence number 21 and 22 are unused and so would be accepted by the server. For
example, if the HashCookie associated with 21 was presented it would be checked that the
sequence number (21) falls within the accepted variance from the sequence number of the
Next HashCookie value (24). If this was the case, the HashCookie with sequence number 21
would be removed from the window and the request would be honoured. If the acceptable
variance was set at 2 then 21 would not fall within this acceptable variance and so the
request with this sequence number would be rejected.

 Security Benefits of HashCookies

2009-05-07 Page 9 of 12
© MWR InfoSecurity

4 Security Benefits of HashCookies

If HashCookies were used then even if a session token was obtained it would not be possible
for anyone else to hijack the associated session unless they also knew the salt provided by the
server. It is therefore essential that the salt is afforded the greatest level of protection possible.
Any attacker would also need a valid sequence number, although, as sequence numbers are
not protected, this should not be seen as an additional layer of security.

It is important to ensure that HashCookies do not introduce security weaknesses and careful
implementation is required to ensure that this does not happen.

 Considerations

2009-05-07 Page 10 of 12
© MWR InfoSecurity

5 Considerations

Any implementation of HashCookies will require support by both the server and the client
(although it is expected that the majority of any changes would be server side). Consequently,
any implementation will place an increased load on the server, although it is not expected
that this would be significant in normal operation. Nevertheless, it is important that this
functionality should not be vulnerable to manipulation by an attacker seeking to exploit
denial of service opportunities.

This paper is intended as an introduction to the concept of HashCookies rather than an in
depth technical analysis. However, the manner in which the concept has been designed to
ensure its resilience against one such form of attack is discussed here, both to illustrate some
possibly less obvious design choices, and to highlight the importance of ensuring that the
security benefits of this concept cannot be undermined by poor implementation.

It is important that the use of HashCookies should not allow a malicious client to cause the
server to compute a large number of HashCookies. Essentially, it is important that the server
places an upper bound on the number of HashCookies which can be generated and that this
limit cannot be circumvented (for example, by submitting a request with a high sequence
number).

In the early designs the intention was to rehash a session cookie before each request, no static
session ID was used and so the session ID was the HashCookie. This approach was entirely
adequate for single threaded environments, but it quickly became apparent that there could
be problems with multi threaded browsers making multiple requests which may arrive out of
order and so sequence numbers were introduced. With HashCookies containing sequence
numbers, if a HashCookie arrived with a sequence number more than 1 greater than the last
request received, then the server would simply hash the session cookie and then the result of
this hashing and then check that the HashCookie actually received matched this. In other
words the hashing process was iterative; to obtain the value of a HashCookie five down the
line it would require five hashes to computed. However, this simple approach could allow a
malicious user to submit a request with a sequence number millions greater than the current
sequence number – this would involve the computation of all the intervening HashCookie
values and so could be exploited to exhaust the host’s resources and cause a Denial of
Service condition.

This situation could be relatively easily addressed by placing a limit on requests such that
only sequence numbers, for instance, 16 greater than the last valid sequence number should
be accepted. However, instead of introducing mitigating controls for what was essentially a
design flaw, the issue was addressed head on and the concept redesigned. It is critical that
flaws such as this are not introduced in to server side implementations of HashCookies. Many
existing server technologies already use hashing for functionality such as CSRF protection and
it is expected that the impact which HashCookies would place on a server would be
negligible compared to this. However, flawed implementations of this security feature could
prevent the widespread adoption of HashCookies and so it is important that in any proposed
implementation careful consideration is given to these types of attack and the manner in
which malicious users could seek to circumvent or exploit this feature.

 Summary and Future Work

2009-05-07 Page 11 of 12
© MWR InfoSecurity

6 Summary and Future Work

Currently, I am working on a Firefox plugin to handle the client side requirements of
HashCookies. Others are working on a Ruby on Rails plugin which will form the basis of a
server side solution. These should be available in the very near future so that they can be
tested for effectiveness and robustness.

All feedback and comments on this concept are greatly appreciated, whether they are
positive or constructively negative.

Email
john.fitzpatrick[at]mwrinfosecurity[dot]com

 Error! No text of specified style in document.

2009-05-07 Page 12 of 12
© MWR InfoSecurity

MWR InfoSecurity
St. Clement House
1-3 Alencon Link

Basingstoke, RG21 7SB
Tel: +44 (0)1256 300920
Fax: +44 (0)1256 844083

mwrinfosecurity.com
labs.mwrinfosecurity.com

