
or why YOU should pay $1,000,000 for two regex queries!1!

Miłosz Gaczkowski

WithSecure Consulting

• Miłosz Gaczkowski
• /ˈmi.wɔʂ/

• Past life: University teaching
• Computer science

• Cybersecurity

• Current life: Mobile Security Lead at WithSecure
Consulting

• Android/iOS apps

• Android devices

• BYOD Mobile Application Management setups

• We’ve done a lot of testing of MAM solutions, individual
applications with MAM support, and additional security
apps

• Some of them are better than others, but all have serious
issues

• The two big mobile platforms – iOS and Android – simply
do not have the tools to support good MAM approaches

• (tbf, neither does any laptop or other device)

• However, the push from industry is strong – so MDM
providers try their best to provide MAM solutions

• I want to show you some funny trends we’ve seen, without
naming specific vendors

• They have a really tough job here – someone in sales
promised the world to large organisations, and those
teams now have to deliver the impossible

What’s a “MAM” anyway?

• Today’s talk is all about the use of mobile phones at work

• Accessing work e-mails, chat messages, etc., on the go

• Could be a lot of sensitive stuff in there

• Stuff your boss doesn’t want public

• Historically, the solution has been obvious:

• Workplace buys you a phone

• You use it, but they own it

• Logically: they control it
• They can lock and wipe “your” device

• They decide what apps go on the phone

• What VPNs/proxies you connect to

• (Maybe?) They have some level of surveillance, too

• Solutions that facilitate this approach are called Mobile Device
Management solutions

• Usually: a management profile that restricts your device

• Usually: a set of apps with admin rights that can change device settings

• Sometimes: additional tools, like an antivirus

• Usually: a cloud service to co-ordinate a fleet of devices, deploy config at scale,
etc.

• Now, MDM works very well, but it has its problems

• Company needs to own the devices
• Can’t reasonably ask user to sign off admin rights to their own phone

• Expensive!

• Settings usually very restrictive on users
• If a user needs to quickly install an app, they’re out of luck

• IT needs to change your profile

• This probably means exceptions/approvals

• Have fun searching for permit A38

• It’s tempting to let users bring their own devices into work
• But what about security?

• MAM – Mobile Application Management

• Rather than controlling the whole device, we create a sandbox to protect
just corporate apps

• Typically: no copy-paste outside the sandbox

• No screenshots

• No file sharing between MAM and unsandboxed apps

• Company can block access/wipe data of managed apps, but nothing else

• Started around 2010, but really picked up during early COVID

• In theory: best of both worlds
• User retains control of their own device

• Company doesn’t have to buy 1000s of devices, keep up with maintenance

• No need to deal with complex processes over whether Employee X should be
allowed to install Spotify/TikTok/Google Maps

• Company data still protected

• Approach has its problems, and it’s not an uncommon opinion that “you
can’t secure BYOD”

“Malicious WiFi detection”

• Part of a mobile threat detection solution

• Problem: user may control to any WiFi – what if it does something dodgy?
• DNS spoofing?

• Person-in-the-Middle?

• Evil twin attacks?

• Promise: No problem, our defensive security product will identify them!
• (but we won’t tell you what we detect, or how)

• Our task: assess this solution and comment on its value

• Let’s get reversing!

• OK, so the application that does it doesn’t have much privileged access to
the actual networks

• Remember, this is in a MAM context – the user owns the phone, so the
software can’t have much control

• Application fetches detection rules from a server – so they could be
dynamically updated

• Let’s have a look at the config!

networkProtection’: {

“RogueAP”: [

{

“id”: 1,

“OUI”: “00:C0:CA”

},

{

“id”: 2,

“ssid”: “^Pineapple_[0-9a-fA-F]{4}$”

},

{

“id”: 3,

“prviateIp”: “^172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\. (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$”,

“ssid”: “^Pineapple_[0-9a-fA-F]{4}$”

},

{

“id”: 4,

“ssid”: “^Pineapple_[0-9a-fA-F]{4}$”

“OUI”: “00:13:37”

“prviateIp”: “^172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\. (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$”,

},

],

}

networkProtection’: {

“RogueAP”: [

{

“id”: 1,

“OUI”: “00:C0:CA”

},

{

“id”: 2,

“ssid”: “^Pineapple_[0-9a-fA-F]{4}$”

},

{

“id”: 3,

“prviateIp”: “^172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\. (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$”,

“ssid”: “^Pineapple_[0-9a-fA-F]{4}$”

},

{

“id”: 4,

“ssid”: “^Pineapple_[0-9a-fA-F]{4}$”

“OUI”: “00:13:37”

“prviateIp”: “^172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\. (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$”,

},

],

}

• Rule 1: Detect all wireless networks whose OUI is 00:C0:CA
• OUI – Organizationally Unique Identifier – first 3 octets of MAC address, typically used to identify manufacturer

• Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
• e.g., Pineapple_1234, Pineapple_1a2b

• Rule 3: Same as rule 2, but with some additional matching on IP addresses

• Rule 4: Same as rule 3, but also checks if OUI is 00:13:37

• If one of these rules is met, then the network is “malicious”, and we warn the user to disconnect

• Rule 1: Detect all wireless networks whose OUI is 00:C0:CA
• OUI – Organizationally Unique Identifier – first 3 octets of MAC address, typically used to identify manufacturer

• Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
• e.g., Pineapple_1234, Pineapple_1a2b

• Rule 3: Same as rule 2, but with some additional matching on IP addresses

• Rule 4: Same as rule 3, but also checks if OUI is 00:13:37

• If one of these rules is met, then the network is “malicious”, and we warn the user to disconnect

• Pay attention to the last 2 rules

• If rule 3 is met, then rule 2 was already met

• If rule 4 is met, then rule 3 was already met

• ...so those last 2 are redundant!

• Rule 1: Detect all wireless networks whose OUI is 00:C0:CA
• OUI – Organizationally Unique Identifier – first 3 octets of MAC address, typically used to identify manufacturer

• Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
• e.g., Pineapple_1234, Pineapple_1a2b

• Rule 3: Same as rule 2, but with some additional matching on IP addresses

• Rule 4: Same as rule 3, but also checks if OUI is 00:13:37

• If one of these rules is met, then the network is “malicious”, and we warn the user to disconnect

• Pay attention to the last 2 rules

• If rule 3 is met, then rule 2 was already met

• If rule 4 is met, then rule 3 was already met

• ...so those last 2 are redundant!

• Rule 1: Detect all wireless networks whose OUI is 00:C0:CA
• OUI – Organizationally Unique Identifier – first 3 octets of MAC address, typically used to identify manufacturer

• Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
• e.g., Pineapple_1234, Pineapple_1a2b

• Rule 3: Same as rule 2, but with some additional matching on IP addresses

• Rule 4: Same as rule 3, but also checks if OUI is 00:13:37

• So, what’s actually happening here?

• These are meant to identify devices by 2 manufacturers
• 00:C0:CA – Alfa, Taiwanese network equipment manufacturer. Their USB dongles are popular among security testers

• 00:13:37 – WiFi Pineapple by Hak5 – again, common pentesting tool

• Caveat: both devices are capable of spoofing their OUI
• No real attacker would leave these on their default settings

• Also, Alfa makes a lot of network equipment, not just pentesting tools. I wonder how many of them are out there in the
wild...

• Also, Alfa makes a lot of network equipment, not just pentesting tools. I wonder how many of them are out there in the
wild...

• WIGLE.NET can help us find out!

• Oh.

• The only other rule that actually matters is the SSID (network name) one

• Pineapple_{4 hex chars} is the default SSID of the WiFi Pineapple

• Can you just change the defaults?
• Yup

• Would it produce false positives for any network with that name?
• Yup

• Best case scenario: nothing

• Worst case scenario: lets you prank people by setting your phone’s
hotspot name to Pineapple_1234

• Realistically, very little

• Detecting a malicious network from this perspective would be very hard

“Keyboard allow-listing”

• Android phones let you install custom keyboard apps.

• These might allow for data leakage.
• Technically, a 3rd party keyboard app could be a keylogger

• Or it might send data to a server somewhere for analytics

• So: some businesses want to restrict 3rd party keyboards in their MAM

• Our product lets you specify which keyboards are allowed in your
protected apps, and anything else is forbidden

• Administrator just specified application package identifiers (e.g.,
com.android.inputmethod.latin for GBoard)

• Administrator just specified application package identifiers (e.g.,
com.android.inputmethod.latin for Gboard)

• This seemed a little strange:
• The package identifier is just a string you specify when writing an app – it’s

basically just the app’s name

• Is there anything stopping me from grabbing one of the approved names and
making my own keyboard that uses it?

• I decided to take com.android.inputmethod.hindi for the Google Indic
Keyboard

• Administrator just specified application package identifiers (e.g., com.android.inputmethod.latin for GBoard)

• This seemed a little strange:
• The package identifier is just a string you specify when writing an app – it’s basically just the app’s name

• Is there anything stopping me from grabbing one of the approved names and making my own keyboard that uses it?

• I decided to take com.android.inputmethod.hindi for the Google Indic Keyboard

• I modified an open-source keyboard to make it into a basic keylogger, and I made it an ABC keyboard for fun

• In theory, since the MAM seems to only check for keyboard names, I should now be able to use it

• Let’s see the list of allowed keyboards...
• Yup!

• Very little.

• Best case scenario: it prevents people from accidentally using the “wrong”
keyboard.

• Worst case scenario: provides a completely false sense of security.

• It could try to validate the app’s signature (was it actually made by the right
organisation?)

• Alternatively: implement your own keyboard and only allow that.

“Website allow-listing”

• This time we’re looking at a Web browser within MAM

• Remember: in an ideal world, we can’t copy-paste things out of “work” and
into the rest of the device

• But how does that work with a Web browser, that might be used for both?

• In theory: we provide a list of “work” websites that are treated as “inside”
the sandbox. Everything else is “outside” of the sandbox (so we can’t
copy-paste into it)

• A little bit of a burden on the IT admins, but, in theory, this should work...

• This time we’re looking at a Web browser within MAM

• Remember: in an ideal world, we can’t copy-paste things out of “work” and
into the rest of the device

• But how does that work with a Web browser, that might be used for both?

• In theory: we provide a list of “work” websites that are treated as “inside”
the sandbox. Everything else is “outside” of the sandbox (so we can’t
copy-paste into it)

• A little bit of a burden on the IT admins, but, in theory, this should work...

• Unfortunately, things are never quite so simple

• Unfortunately, things are never quite so simple

• Reverse-engineering the app revealed a bunch of undocumented behaviour

• Including the fact that all connections to local IP addresses (e.g., 192.168.1.xxx) were always treated as “inside” the
sandbox

• So: you can either host your own info-stealer website or proxy local traffic to a website of your choice, and paste any
corporate data you want into that site!

• We are still a long way away from “good” MAM environments

• Many of them make loud promises, and claim to deliver on the idea of
personal devices with “secure” corporate sandboxes

• In reality, they rarely stand up to scrutiny...

• ...and this scrutiny is very rare.

• Independent validation of vendors’ claims is essential here

• e-mail: milosz.gaczkowski@withsecure.com

• Twitter: @cyberMilosz

• LinkedIn: https://www.linkedin.com/in/milosz-gaczkowski/

mailto:milosz.gaczkowski@withsecure.com
https://twitter.com/cyberMilosz
https://www.linkedin.com/in/milosz-gaczkowski/
https://www.linkedin.com/in/milosz-gaczkowski/
https://www.linkedin.com/in/milosz-gaczkowski/

	Slide 1: Mobile Security Theater
	Slide 2: whoami
	Slide 3: Today’s talk
	Slide 4: Managed (and not-so-managed) Devices
	Slide 5: MDM vs. MAM
	Slide 6: MDM vs. MAM
	Slide 7: MDM vs. MAM
	Slide 8: MDM vs. MAM
	Slide 9: Example 1
	Slide 10: “Malicious WiFi detection”
	Slide 11: One reverse engineering later...
	Slide 12
	Slide 13: That’s... it. 4 rules.
	Slide 14: Quick summary
	Slide 15: Quick summary
	Slide 16: Quick summary
	Slide 17: Quick summary
	Slide 18: OUI rules
	Slide 19: OUI rules
	Slide 20: SSID rule
	Slide 21: SSID rule
	Slide 22: So, what does this all do?
	Slide 23: Example 2
	Slide 24: “Keyboard allow-listing”
	Slide 25: “Keyboard allow-listing”
	Slide 26: “Keyboard allow-listing”
	Slide 27: “Keyboard allow-listing”
	Slide 28: So, what does this all do?
	Slide 29: Example 3
	Slide 30: “Website allow-listing”
	Slide 31: “Website allow-listing”
	Slide 32: “Website allow-listing”
	Slide 33: Conclusions!
	Slide 34: Conclusions!
	Slide 35: Keep in touch!
	Slide 36

