Mobile Sec

Mitosz Gaczkows
WithSecure Cons

W/ TH

secure

whoami

 Mitosz Gaczkowski
e /'mi.wog/

» Past life: University teaching
» Computer science
* Cybersecurity

» Current life: Mobile Security Lead at WithSecure
Consulting

* Android/iOS apps
* Android devices
* BYOD Mobile Application Management setups

Today’s talk

» We’ve done a lot of testing of MAM solutions, individual
applications with MAM support, and additional security

apps
« Some of them are better than others, but all have serious
issues
* The two big mobile platforms —iOS and Android — simply
do not have the tools to support good MAM approaches
 (tbf, neither does any laptop or other device)

» However, the push from industry is strong — so MDM
providers try their best to provide MAM solutions

* | want to show you some funny trends we’ve seen, without
naming specific vendors

» They have areally tough job here — someone in sales
promised the world to large organisations, and those
teams now have to deliver the impossible

INTERNAL

Managed
(and not-so-managed)
Devices

What's a “MAM” anywe

MDM vs. MAM

Today’s talk is all about the use of mobile phones at work
Accessing work e-mails, chat messages, etc., on the go
Could be a lot of sensitive stuff in there

Stuff your boss doesn’t want public

MDM vs. MAM

 Historically, the solution has been obvious:
» Workplace buys you a phone
* You use it, but they own it

» Logically: they control it
* They can lock and wipe “your” device
* They decide what apps go on the phone
* What VPNs/proxies you connect to
* (Maybe?) They have some level of surveillance, too

« Solutions that facilitate this approach are called Mobile Device
Management solutions

* Usually: a management profile that restricts your device
» Usually: a set of apps with admin rights that can change device settings
* Sometimes: additional tools, like an antivirus

» Usually: a cloud service to co-ordinate a fleet of devices, deploy config at scale,
etc.

MDM vs. MAM

 Now, MDM works very well, but it has its problems

« Company needs to own the devices
» Can’treasonably ask user to sign off admin rights to their own phone
* Expensive!

» Settings usually very restrictive on users
* Ifauserneeds to quickly install an app, they’re out of luck l
* IT needs to change your profile
* This probably means exceptions/approvals
» Have fun searching for permit A38

Bk

* It’s tempting to let users bring their own devices into work
* Butwhat about security?

,
55

W/ TH

secure

MDM vs. MAM

MAM — Mobile Application Management

« Rather than controlling the whole device, we create a sandbox to protect
just corporate apps

* Typically: no copy-paste outside the sandbox

* No screenshots

* No file sharing between MAM and unsandboxed apps

+ Company can block access/wipe data of managed apps, but nothing else

» Started around 2010, but really picked up during early COVID

* Intheory: best of both worlds
» Userretains control of their own device
* Company doesn’t have to buy 1000s of devices, keep up with maintenance

* No need to deal with complex processes over whether Employee X should be
allowed to install Spotify/TikTok/Google Maps

» Company data still protected

» Approach has its problems, and it’'s not an uncommon opinion that “you
can’t secure BYOD”

Example 1

“Malicious

“Malicious WiFi detection”

e Part of a mobile threat detection solution

* Problem: user may control to any WiFi —what if it does something dodgy?
* DNS spoofing?
* Person-in-the-Middle?
* Eviltwin attacks?

* Promise: No problem, our defensive security product will identify them!
* (but we won't tell you what we detect, or how)

 Qurtask: assess this solution and comment on its value

» Let’s get reversing!

One reverse engineering later...

* OK, so the application that does it doesn’t have much privileged access to
the actual networks

 Remember, this is in a MAM context —the user owns the phone, so the
software can’t have much control

» Application fetches detection rules from a server — so they could be
dynamically updated

» Let’s have alook at the config!

INTERNAL

networkProtection’: {

“RogueAP”: [

I,

{

}s

}s

}s

}s

“id”: 1,

“OUI”: “@0:C0:CA”

“id”: 2,

“ssid”: “~Pineapple_[0-9a-fA-F]{4}$”

“id”: 3,
“prviateIp”: “~172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]1?)\\. (25[@-5]|2[0-4][0-9]|[01]?[0-9]1[0-9]?)%",
“ssid”: “~Pineapple_[0-9a-fA-F]{4}$”

“id”: 4,

“ssid”: “~Pineapple_[0-9a-fA-F]{4}%”

“OUI”: “00:13:37”

“prviateIp”: “~172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\. (25[@-5]|2[0-4][0-9]|[@1]?[0-9][0-9]?)%",

W/ TH

secure

networkProtection’: {

“RogueAP”: [

I,

{

}s

}s

}s

}s

“id”: 1,

“OUI”: “@0:C0:CA”

e s That's... it. 4 rules.

“ssid”: “~Pineapple_[0-9a-fA-F]{4}$”

“id”: 3,
“prviateIp”: “~172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]1?)\\. (25[@-5]|2[0-4][0-9]|[01]?[0-9]1[0-9]?)%",
“ssid”: “~Pineapple_[0-9a-fA-F]{4}$”

“id”: 4,

“ssid”: “~Pineapple_[0-9a-fA-F]{4}%”

“OUI”: “00:13:37”

“prviateIp”: “~172\\.16\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\. (25[@-5]|2[0-4][0-9]|[@1]?[0-9][0-9]?)%",

W/ TH

secure

Quick summary

* Rule 1: Detect all wireless networks whose OUI is 00:CO:CA
* OUI-Organizationally Unique Identifier — first 3 octets of MAC address, typically used to identify manufacturer

* Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
* e.g., Pineapple_1234, Pineapple_la2b

* Rule 3: Same as rule 2, but with some additional matching on IP addresses
* Rule 4: Same as rule 3, but also checks if OUI is 00:13:37

* |f one of these rules is met, then the network is “malicious”, and we warn the user to disconnect

W/ TH

secure

Quick summary

Rule 1: Detect all wireless networks whose OUI is 00:C0:CA
* OUI-Organizationally Unique Identifier — first 3 octets of MAC address, typically used to identify manufacturer

* Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
* e.g., Pineapple_1234, Pineapple_la2b

* Rule 3: Same as rule 2, but with some additional matching on IP addresses
* Rule 4: Same as rule 3, but also checks if OUI is 00:13:37

* |f one of these rules is met, then the network is “malicious”, and we warn the user to disconnect
« Pay attention to the last 2 rules
« Ifrule 3 is met, then rule 2 was already met

» Ifrule 4 is met, then rule 3 was already met

...So those last 2 are redundant!

W/ TH

secure

Quick summary

* Rule 1: Detect all wireless networks whose OUI is 00:CO:CA
* OUI-Organizationally Unique Identifier — first 3 octets of MAC address, typically used to identify manufacturer

* Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
* e.g., Pineapple_1234, Pineapple_la2b

* |f one of these rules is met, then the network is “malicious”, and we warn the user to disconnect
« Pay attention to the last 2 rules
« Ifrule 3 is met, then rule 2 was already met

» Ifrule 4 is met, then rule 3 was already met

...So those last 2 are redundant!

W/ TH

secure

Quick summary

* Rule 1: Detect all wireless networks whose OUI is 00:CO:CA
* OUI-Organizationally Unique Identifier — first 3 octets of MAC address, typically used to identify manufacturer

* Rule 2: Detect all networks whose SSID (name) is “Pineapple_” followed by 4 hex characters
* e.g., Pineapple_1234, Pineapple_la2b

» So, what’s actually happening here?

W/ TH

secure

OUIl rules

» These are meant to identify devices by 2 manufacturers

* 00:C0:CA - Alfa, Taiwanese network equipment manufacturer. Their USB dongles are popular among security testers
* 00:13:37 - WiFi Pineapple by Hak5 — again, common pentesting tool

« Caveat: both devices are capable of spoofing their OUI RIRESEEEE

- No real attacker would leave these on their default settings |8 © opense
o]

PineAP Open Access Point @
(1]
B
]

« Also, Alfa makes a lot of network equipment, not just pentesting tools. | wonder how many of them are out there in the
wild...

W/ TH

secure

OUIl rules

* Also, Alfa makes a lot of network equipment, not just pentesting tools. | wonder how many of them are out there in the
wild...

WIGLE.NET can help us find out!

. Oh. | ’ W/ TH

secure

INTERNAL

SSID rule

* The only other rule that actually matters is the SSID (network name) one

* Pineapple_{4 hex chars} is the default SSID of the WiFi Pineapple

« Canyou just change the defaults?
* Yup

@ WiFi Pineapple
*

- _f.] Open &F

PineAP Open Access Point L

WithSecure Test

O

W/ TH

secure

SSID rule

« Would it produce false positives for any network with that name?
* Yup

09:30 =3

£ ting Wi-Fi

Wi-Fi

&

1threat found

Let’'s take care of it right away.

Device needs attention

Malicious Wi-Fi connection

s
PineAP_WPA as Maliclous Wi-Fi connection
Pineapple_1234
Malicious Wi-Fi identified by 8-
10S is up
8 = 10S 6.3
WithSecure Test <

Other...

Ask 10 Join Networks

W/ TH

secure

So, what does this all do?

» Best case scenario: nothing

» Worst case scenario: lets you prank people by setting your phone’s

hotspot name to Pineapple_1234 ‘ ?
What should it do?

» Realistically, very little

» Detecting a malicious network from this perspective would be very hard

Example 2

“Keyboarc

“Keyboard allow-listing”

» Android phones let you install custom keyboard apps.

* These might allow for data leakage.
* Technically, a 3rd party keyboard app could be a keylogger
* Orit might send data to a server somewhere for analytics

» So0: some businesses want to restrict 3rd party keyboards in their MAM

« Our product lets you specify which keyboards are allowed in your
protected apps, and anything else is forbidden

« Administrator just specified application package identifiers (e.g.,
com.android.inputmethod. latin for GBoard)

“Keyboard allow-listing”

« Administrator just specified application package identifiers (e.g.,
com.android.inputmethod. latin for Gboard)

» This seemed a little strange:

* The package identifier is just a string you specify when writing an app —it’s
basically just the app’s nhame

* Isthere anything stopping me from grabbing one of the approved names and
making my own keyboard that uses it?

* |decidedtotake com.android.inputmethod.hindi forthe Google Indic
Keyboard

“Keyboard allow-listing”

« Administrator just specified application package identifiers (e.g., com.android.inputmethod.latin for GBoard)
» This seemed a little strange:

INTERNAL

The package identifier is just a string you specify when writing an app — it’s basically just the app’s name

Is there anything stopping me from grabbing one of the approved names and making my own keyboard that uses it?
| decided to take com.android.inputmethod.hindi forthe Google Indic Keyboard

| modified an open-source keyboard to make it into a basic keylogger, and | made it an ABC keyboard for fun

1

2 bzcaddesfﬁg

7 8
h
@ # $ % &

klmnop-q+r(

* . : i ?

Lo .o -Uan W. X' y Z. W/ T H

secure

“Keyboard allow-listing”

* Intheory, since the MAM seems to only check for keyboard names, | should now be able to use it

» Let’s see the list of allowed keyboards...
* Yup!

Select keyboard

To use this app you need to switch to

a keyboard that's approved by your
organization. On the next screen, select
one of the following keyboards.

‘Very Fake Google Indic Keyboard

-Gboard

CONTINUE
W/ TH

secure

INTERNAL

So, what does this all do?

» Very little.

» Best case scenario: it prevents people from accidentally using the “wrong”
keyboard.

« Worst case scenario: provides a completely false sense of security.

What should it do?

|t could try to validate the app’s signature (was it actually made by the right
organisation?)

« Alternatively: implement your own keyboard and only allow that.

Example 3

“Website

INTERNAL

“Website allow-listing”

» This time we’re looking at a Web browser within MAM

« Remember: in an ideal world, we can’t copy-paste things out of “work” and
into the rest of the device

* But how does that work with a Web browser, that might be used for both?

» Intheory: we provide a list of “work” websites that are treated as “inside”
the sandbox. Everything else is “outside” of the sandbox (so we can’t
copy-paste into it)

« Alittle bit of a burden on the IT admins, but, in theory, this should work...

“Website allow-listing”

» This time we’re looking at a Web browser within MAM

« Remember: in an ideal world, we can’t copy-paste things out of “work” and
into the rest of the device

* But how does that work with a Web browser, that might be used for both?

» Intheory: we provide a list of “work” websites that are treated as “inside”
the sandbox. Everything else is “outside” of the sandbox (so we can’t
copy-paste into it)

« Alittle bit of a burden on the IT admins, but, in theory, this should work...

« Unfortunately, things are never quite so simple

“Website allow-listing”

» Unfortunately, things are never quite so simple
* Reverse-engineering the app revealed a bunch of undocumented behaviour

* Including the fact that all connections to local IP addresses (e.g., 192.168.1.xxx) were always treated as “inside” the
sandbox

» So0: you can either host your own info-stealer website or proxy local traffic to a website of your choice, and paste any

corporate data you want into that site! v B 0 R

o Ay 192.168.1.102:808(C

w [+

New Paste Syntax Highlighting

W/ TH

secure

Optional Paste Settings

Conclusio

eeeeee

Conclusions!

« We are still along way away from “good” MAM environments

« Many of them make loud promises, and claim to deliver on the idea of
personal devices with “secure” corporate sandboxes

* Inreality, they rarely stand up to scrutiny...

« ...andthis scrutiny is very rare.

* Independent validation of vendors’ claims is essential here

INTERNAL

Keep in touch!

e e-mail:
e Twitter:
e Linkedin:

eeeeee

mailto:milosz.gaczkowski@withsecure.com
https://twitter.com/cyberMilosz
https://www.linkedin.com/in/milosz-gaczkowski/
https://www.linkedin.com/in/milosz-gaczkowski/
https://www.linkedin.com/in/milosz-gaczkowski/

	Slide 1: Mobile Security Theater
	Slide 2: whoami
	Slide 3: Today’s talk
	Slide 4: Managed (and not-so-managed) Devices
	Slide 5: MDM vs. MAM
	Slide 6: MDM vs. MAM
	Slide 7: MDM vs. MAM
	Slide 8: MDM vs. MAM
	Slide 9: Example 1
	Slide 10: “Malicious WiFi detection”
	Slide 11: One reverse engineering later...
	Slide 12
	Slide 13: That’s... it. 4 rules.
	Slide 14: Quick summary
	Slide 15: Quick summary
	Slide 16: Quick summary
	Slide 17: Quick summary
	Slide 18: OUI rules
	Slide 19: OUI rules
	Slide 20: SSID rule
	Slide 21: SSID rule
	Slide 22: So, what does this all do?
	Slide 23: Example 2
	Slide 24: “Keyboard allow-listing”
	Slide 25: “Keyboard allow-listing”
	Slide 26: “Keyboard allow-listing”
	Slide 27: “Keyboard allow-listing”
	Slide 28: So, what does this all do?
	Slide 29: Example 3
	Slide 30: “Website allow-listing”
	Slide 31: “Website allow-listing”
	Slide 32: “Website allow-listing”
	Slide 33: Conclusions!
	Slide 34: Conclusions!
	Slide 35: Keep in touch!
	Slide 36

