

http://labs.mwrinfosecurity.com

PUBLIC

PUBLIC 1

Apache Qpid Denial of Service
06/02/2015

Software: Apache Qpid

Affected Versions: All versions prior and including 0.30 are affected.

CVE Reference: CVE-2015-0224

Author: Georgi Geshev - MWR Labs (http://labs.mwrinfosecurity.com/)

Severity: High

Vendor: Apache

Vendor Response: Fix Released

Description:

Apache Qpid is an open source message-oriented middleware messaging broker. Qpid provides Java and C++

implementations of the Advanced Message Queuing Protocol (AMQP).

The C++ broker implementation is susceptible to several denial of service conditions caused by mishandling of

invalid or unsupported AMQP packets.

Impact:

Three distinct bugs allow for an unauthenticated adversary to crash the broker process, thus causing a denial of

service and preventing legitimate users from exchanging messages.

Cause:

Apache Qpid performs incomplete and insufficient sanity checks on incoming AMQP packets.

Interim Workaround:

Apache has developed a patch that can be manually applied to Qpid 0.30. This patch is available under the

following link: https://issues.apache.org/jira/browse/QPID-6310

Solution:

Upgrade to Apache Qpid version 0.31 or later.

http://labs.mwrinfosecurity.com/
https://issues.apache.org/jira/browse/QPID-6310

http://labs.mwrinfosecurity.com

PUBLIC

PUBLIC 2

Technical details

Three distinct denial of service conditions were identified in the way Qpid handles malformed, unsupported or

unexpected AMQP packets.

The AMQP 0-10 specification allows for certain commands and controls to transfer additional segments, namely

header and body segments that can be used for carrying message content.

Apache Qpid handles additional segments only for the AMQP message-transfer command. Any other command

that includes header and/or body segments would cause a segmentation fault in the broker process due to an

out-of-bounds read condition. This will cause the broker process to exit.

The following patch was developed to discard frames with additional segments, unless the specified AMQP

command is message-transfer.

diff --git a/qpid/cpp/src/qpid/broker/MessageBuilder.cpp

b/qpid/cpp/src/qpid/broker/MessageBuilder.cpp

index 7cb9951..f5e9332 100644

--- a/qpid/cpp/src/qpid/broker/MessageBuilder.cpp

+++ b/qpid/cpp/src/qpid/broker/MessageBuilder.cpp

@@ -45,6 +45,9 @@ void MessageBuilder::handle(AMQFrame& frame)

 switch(state) {

 case METHOD:

 checkType(METHOD_BODY, type);

+ if (!frame.getMethod()->isA<qpid::framing::MessageTransferBody>())

+ throw NotImplementedException(QPID_MSG("Unexpected method: " <<

*(frame.getMethod())));

+

 exchange = frame.castBody<qpid::framing::MessageTransferBody>()-

>getDestination();

 state = HEADER;

 break;

Another vulnerability relates to the way Apache Qpid handles out-of-session AMQP controls.

The AMQP 0-10 specification defines two distinct data units, namely commands and controls, that can be

transferred in AMQP. Commands can only be sent on established sessions, while there is no such requirement for

the controls.

One of the AMQP defined controls is session-gap. This control is not supported by Qpid and an appropriate error

message is returned to a client when such a control is received on an established session. However, the session-

gap control is not properly handled when requested before a session is opened, which triggers an assert

statement and causes the process to exit.

The vendor fix was to check whether this control is received out-of-session, discard the AMQP frame and notify

the client.

diff --git a/qpid/cpp/src/qpid/amqp_0_10/SessionHandler.cpp

b/qpid/cpp/src/qpid/amqp_0_10/SessionHandler.cpp

http://labs.mwrinfosecurity.com

PUBLIC

PUBLIC 3

index 43f39c2..bd0dcbf 100644

--- a/qpid/cpp/src/qpid/amqp_0_10/SessionHandler.cpp

+++ b/qpid/cpp/src/qpid/amqp_0_10/SessionHandler.cpp

@@ -276,6 +276,7 @@ void SessionHandler::flush(bool expected, bool confirmed, bool

completed) {

 }

 void SessionHandler::gap(const SequenceSet& /*commands*/) {

+ checkAttached();

 throw NotImplementedException("session.gap not supported");

 }

Another flaw was found in the way Apache Qpid handles AMQP sequence-set variables.

The AMQP 0-10 specification defines the variable width sequence-set type. According to the AMQP standard, the

sequence-set type is a set of pairs of RFC-1982 numbers representing a discontinuous range within an RFC-1982

sequence. Each pair represents a closed interval within the list. The messaging broker service can be crashed

when handling a sequence-set which contains a pair, also referred to as a range, where the range expressed is

the maximum possible one. This would trigger an assert statement which will cause the process to exit.

The following patch resolves the vulnerability and supersedes an incomplete fix related to CVE-2015-0203.

diff --git a/qpid/cpp/src/qpid/framing/SequenceSet.cpp

b/qpid/cpp/src/qpid/framing/SequenceSet.cpp

index 845bf8b..6510842 100644

--- a/qpid/cpp/src/qpid/framing/SequenceSet.cpp

+++ b/qpid/cpp/src/qpid/framing/SequenceSet.cpp

@@ -33,7 +33,18 @@ namespace framing {

 namespace {

 //each range contains 2 numbers, 4 bytes each

-uint16_t RANGE_SIZE = 2 * 4;

+uint16_t RANGE_SIZE = 2 * 4;

+int32_t MAX_RANGE = 2147483647;//2^31-1

+

+int32_t gap(const SequenceNumber& a, const SequenceNumber& b)

+{

+ return a < b ? b - a : a - b;

+}

+

+bool is_max_range(const SequenceNumber& a, const SequenceNumber& b)

+{

+ return gap(a, b) == MAX_RANGE;

+}

http://labs.mwrinfosecurity.com

PUBLIC

PUBLIC 4

 }

 void SequenceSet::encode(Buffer& buffer) const

@@ -58,7 +69,17 @@ void SequenceSet::decode(Buffer& buffer)

 SequenceNumber b(buffer.getLong());

 if (b < a)

 throw IllegalArgumentException(QPID_MSG("Invalid range in sequence set:

" << a << " -> " << b));

- add(a, b);

+ if (is_max_range(a, b)) {

+ //RangeSet holds 'half-closed' ranges, where the end is

+ //one past the 'highest' value in the range. So if the

+ //range is already the maximum expressable with a 32bit

+ //sequence number, we can't represent it as a

+ //'half-closed' range, so we represent it as two ranges.

+ add(a, b-1);

+ add(b);

+ } else {

+ add(a, b);

+ }

 }

 }

Detailed Timeline

Date: Summary:

22/12/2014 Reported to Apache and Red Hat

23/12/2014 Apache confirms reception

07/01/2015 Red Hat suggests fix

12/01/2015 MWR acknowledges fix

13/01/2015 Public fix released

18/01/2015 MWR notifies the vendor of fix and advisory inconsistencies

19/01/2015 Red Hat confirms inconsistencies

23/01/2015 Red Hat suggests new fix

26/01/2015 Public fix released

06/02/2015 Advisory published

