
Labs.mwrinfosecurity.com | © MWR Labs 1

Public

EXTERNAL

Labs.mwrinfosecurity.com | © MWR Labs

Public

EXTERNAL

Polishing Chrome

for Fun and Profit

29/08/2013

Nils & Jon

Labs.mwrinfosecurity.com | © MWR Labs 2

Public

EXTERNAL

Agenda

• Introduction

• Google Chrome

• Pwn2Own Vulnerabilities

• Demo

Labs.mwrinfosecurity.com | © MWR Labs 3

Public

EXTERNAL

Introduction

Nils Jon

• Head of Research

• MWR since 2009

• Previous research

• Android

• Payment terminals

• Security Researcher and Senior

Consultant

• Previous research

• Reverse engineering

• Exploitation

Labs.mwrinfosecurity.com | © MWR Labs 4

Public

EXTERNAL

Google Chrome

Labs.mwrinfosecurity.com | © MWR Labs 5

Public

EXTERNAL

Google Chrome

• Widely considered to be the most secure web browser available

• Designed from the ground up with security in mind

• Lots of security work ongoing

– Code reviews

– Fuzzing (own code & 3rd party)

Labs.mwrinfosecurity.com | © MWR Labs 6

Public

EXTERNAL

Google Chrome – Renderer

• Used to use WebKit

– Fast, but patchy code base

– Multiple authors, varying code quality

– Since forked by Google and renamed to Blink

• Deals directly with attacker controlled, untrusted input

– Popular entry point for previously disclosed browser bugs

Labs.mwrinfosecurity.com | © MWR Labs 7

Public

EXTERNAL

Google Chrome – Sandbox Protections

• “High-risk” renderer component sandboxed

– Restricted Windows security token

– Runs under restrictive job object

– Windows on alternate desktop

– Renderers run as “untrusted” IL (Vista and later)

• Communicates with sensitive broker process via IPC

– Much less attack surface

Labs.mwrinfosecurity.com | © MWR Labs 8

Public

EXTERNAL

Google Chrome – Sandbox Protections

• Restricted renderer processes cannot perform all required actions

• Privileged actions carried out by the browser process

• Renderer requests are evaluated against a policy

• If granted, browser performs the privileged action

Labs.mwrinfosecurity.com | © MWR Labs 9

Public

EXTERNAL

Google Chrome – Hypothetical Sandbox Bypass

• At least two vulnerabilities required to gain privileged code

execution

– One in the unprivileged renderer / plugin process

• Large attack surface, deals directly with untrusted input

– One to break out of the sandbox

• Much more limited attack surface

Labs.mwrinfosecurity.com | © MWR Labs 10

Public

EXTERNAL

Pwn2Own Vulnerabilities

Labs.mwrinfosecurity.com | © MWR Labs 11

Public

EXTERNAL

WebKit

• Conducted source code review

– Bug found approximately 6 weeks after starting

– Mostly gaining familiarity with a new, large codebase

• Specifically looking at interaction between complex features

– May lead to type confusion bugs

Labs.mwrinfosecurity.com | © MWR Labs 12

Public

EXTERNAL

Type Confusion Vulnerabilities

• Class of vulnerability involving invalid casts of objects

• Object of one class is created, and cast to a different class

• Layout of the two classes differs, results in undefined behaviour

– Usually results in code execution

• C++ casts handled using templates

– cast_type<NewClass>(OldClassInstance)

Labs.mwrinfosecurity.com | © MWR Labs 13

Public

EXTERNAL

Explicit Type Casting

• const_cast

– Toggles the “const” property for a class, no cast

• static_cast

– Casts an object to it’s base or derived class

• dynamic_cast

– Casts a base class to one of it’s derived classes

– Operates on pointers or references to objects

– Requires RTTI

Labs.mwrinfosecurity.com | © MWR Labs 14

Public

EXTERNAL

Explicit Type Casting

• reinterpret_cast

– Casts anything to anything!

– E.g. Interpret an array of chars as a Bitmap object

• C-style casts

– Tries multiple casts until one succeeds!

• const_cast

• static_cast

• static_cast followed by const_cast

• reinterpret_cast

• reinterpret_cast followed by const_cast

Labs.mwrinfosecurity.com | © MWR Labs 15

Public

EXTERNAL

Type Confusion Vulnerabilities

• General rule: If cast can happen, it will

• Checks should be done before casting

• Looking for casts with missing or incomplete checks

Labs.mwrinfosecurity.com | © MWR Labs 16

Public

EXTERNAL

Type Confusion Vulnerabilities

• WebKit has common functions for checks before casts of document

elements

• Objects are aware of certain properties

– localName

• The name of the tag, e.g. div

– namespaceURI

• The namespace of the object, e.g. SVG

• namespaceURI + localName = QualifiedName

• Only one valid class for a given QualifiedName

Labs.mwrinfosecurity.com | © MWR Labs 17

Public

EXTERNAL

Type Confusion Vulnerabilities

• 3 common check patterns

– hasTagName(QualifiedName)

– hasLocalName(QualifiedName)

– Manual checks

• Tag.localName == tag

• Tag.namespaceURI == namespace

Labs.mwrinfosecurity.com | © MWR Labs 18

Public

EXTERNAL

hasTagName

• Safe check

• Checks both the namespaceURI and localName of a tag

if (node->hasTagName(inputTag))

 HTMLInputElement* input = static_cast<HTMLInputElement*>(node);

Labs.mwrinfosecurity.com | © MWR Labs 19

Public

EXTERNAL

hasLocalName

• Unsafe check

• Only checks the localName of a tag, not the namespaceURI

CVE-2013-2839 – Chrome (V8Clipboard::setDragImageMethodCustom)

if (toElement(node)->hasLocalName(HTMLNames::imgTag)

 clipboard->setDragImage(static_cast<HTMLImageElement*>(node));

Labs.mwrinfosecurity.com | © MWR Labs 20

Public

EXTERNAL

Manual Checks

• Safety depends on usage

• Generally, not using hasTagName implies incomplete checking or lack

of code familiarity

– Both good indicators of potential bugs

Labs.mwrinfosecurity.com | © MWR Labs 21

Public

EXTERNAL

Methodology

• Select a sub-component of the target software

– WebKit, minus non-default features e.g. accessibility

• Understand what methods WebKit provides for checking cast validity

• Audit all identified casts for safety

Labs.mwrinfosecurity.com | © MWR Labs 22

Public

EXTERNAL

CVE-2013-0912

return static_cast<SVGElement*>(m_contextElement->treeScope()->getElementById(m_viewTargetString));

• Format’s the current SVG document as a tree (DOM)

• Selects an element from the DOM using an ID

– ID provided as the “viewTarget” attribute of the SVG document

Labs.mwrinfosecurity.com | © MWR Labs 23

Public

EXTERNAL

CVE-2013-0912

return static_cast<SVGElement*>(m_contextElement->treeScope()->getElementById(m_viewTargetString));

• Selected element is cast to an SVG element

–No checks

• Assumption is that the element is SVG

• Doesn’t account for non-SVG objects embedded in e.g. foreignObject

tag

Labs.mwrinfosecurity.com | © MWR Labs 24

Public

EXTERNAL

CVE-2013-0912 - Trigger

<svg xmlns="http://www.w3.org/2000/svg">

 <foreignobject x="10" y="10" width="100" height="150">

 <body xmlns="http://www.w3.org/1999/xhtml">

 <feColorMatrix id="viewTarget"></feColorMatrix>

 </body>

 </foreignobject>

</svg>

• On construction, viewTarget is an HTMLUnknownElement

• After casting, it is interpreted as an SVGFeColorMatrixElement

Labs.mwrinfosecurity.com | © MWR Labs 25

Public

EXTERNAL

Sidenote: V8 Reference Caching

• Bug wouldn’t trigger if the SVG document was created dynamically

• V8 caches object references on object creation

• Retrieving the “viewTarget” of an identical, dynamically created SVG

document returns a reference to an HTML element

• Makes fuzzing these bugs tricky

Labs.mwrinfosecurity.com | © MWR Labs 26

Public

EXTERNAL

Demo

Labs.mwrinfosecurity.com | © MWR Labs 27

Public

EXTERNAL

Exploitation

• Place an object containing important information adjacent to the

“confused” object

– Read a pointer in the object to bypass ASLR

– Corrupt the state of the object to read / write arbitrary memory

– Corrupt the virtual function table pointer to gain code execution

• No crash if we’re careful, so we can trigger multiple times

Labs.mwrinfosecurity.com | © MWR Labs 28

Public

EXTERNAL

Exploitation Steps

1. Read a pointer from an adjacent object

2. Read backwards in memory to base address

3. Read memory of chrome DLL

4. Dynamically calculate ROP chain

5. Overwrite virtual function table pointer

Labs.mwrinfosecurity.com | © MWR Labs 29

Public

EXTERNAL

Leaking A Pointer

• We can manipulate the heap using JavaScript

• Aim to place an object next to our “confused” object

– Leak the vtable pointer, from chrome.dll

• Want to avoid heap spraying

• Few allocations, check for success

Labs.mwrinfosecurity.com | © MWR Labs 30

Public

EXTERNAL

Problem – Is It A Div?

• We can check if the value we leak is sane

– Above the minimum load address, less than kernel space

• How can we be sure it’s not a pointer to something else?

Labs.mwrinfosecurity.com | © MWR Labs 31

Public

EXTERNAL

Solution

• See what else in the object we can leak…

• For a div, we can leak the lastChild pointer

• Should be blank for one we just created

– Add a child to the divs and check that this value changes

• BONUS: The lastChild value is a pointer to the new child object

– Store that for later…

Labs.mwrinfosecurity.com | © MWR Labs 32

Public

EXTERNAL

Calculate The Base Address

• We have a pointer in chrome.dll

• We could subtract a static value to determine the library’s base

– That would be amateur 

• Find a “confused” object with a vector property

• Manipulate the adjacent memory to place that vector over a

specific, page-aligned memory region

• Read the first two bytes of each page to detect the “MZ” header

Labs.mwrinfosecurity.com | © MWR Labs 33

Public

EXTERNAL

Disclose The Contents Of Chrome.dll

• We have the base address of chrome.dll

• Set up the adjacent memory to place a vector over the .text

segment of chrome.dll

• Read in the bytes

– Approx. 40Mb

Labs.mwrinfosecurity.com | © MWR Labs 34

Public

EXTERNAL

Problem – Floats

• The vectors we found only contained float values

• Interpreting arbitrary hex bytes as floats is error-prone

• Converting floats back to their hexadecimal representation in

JavaScript is non-trivial

Labs.mwrinfosecurity.com | © MWR Labs 35

Public

EXTERNAL

Solution

• Finally, a practical use for HTML5!

• Create an ArrayBuffer, and two views over it

• One Uint32ArrayBuffer, one Float32ArrayBuffer

• Assign floats to the Float view, retrieve them with the Uint32 view

• Assume null when ambiguous float values are encountered

– +-Infinity, +-NaN

Labs.mwrinfosecurity.com | © MWR Labs 36

Public

EXTERNAL

Dynamically Calculate ROP Gadgets

• We could add static offsets for ROP gadgets

– Again, amateur!

• Take the bytes of chrome.dll’s .text segment

• Use native JavaScript string functions to find byte patterns

dynamically

– Very fast, 100,000 gadgets in under a second

• Store the result at the pointer we leaked from the div earlier

Labs.mwrinfosecurity.com | © MWR Labs 37

Public

EXTERNAL

Controlling a VTable Pointer

• We have our dynamic ROP chain, and we know where it is in

memory

• Now to hijack the flow of execution

– Simplest stage by far

• Manipulate the adjacent memory to our “confused” object

• Point one of the vtables to our ROP chain

– Adjust for the offset being called from the vtable

• Voilà!

Labs.mwrinfosecurity.com | © MWR Labs 38

Public

EXTERNAL

ROP Chain

• Despite the fairly intricate gadget finding, we only ended up

needing a small number

– Stack pivots

• Ended up needing two due to memory layout

– Allocated some RWX memory

– Copied in the bytes for the remaining gadgets, as well as the

kernel shellcode

Labs.mwrinfosecurity.com | © MWR Labs 39

Public

EXTERNAL

Code Execution!

Labs.mwrinfosecurity.com | © MWR Labs 40

Public

EXTERNAL

We are still in the Sandbox

• We execute arbitrary instructions

• Three options:

Chrome Applications Kernel

Labs.mwrinfosecurity.com | © MWR Labs 41

Public

EXTERNAL

Chrome

• Chrome browser process

– Supports the render

• Extensive amount of communication to Renderer

• All implemented in native code

• Other people took this route before

• We considered it

– Jon was code reviewing again

Labs.mwrinfosecurity.com | © MWR Labs 42

Public

EXTERNAL

Chrome?

• Proactive about security…

Labs.mwrinfosecurity.com | © MWR Labs 43

Public

EXTERNAL

Chrome?

• Proactive about security…

Labs.mwrinfosecurity.com | © MWR Labs 44

Public

EXTERNAL

Applications

• Windows Messaging

– Extensive Comms between Applications

• Shatter attacks anyone?

– Get Admin/System

• Similar use in Sandbox breakout

• Chrome protects against this

– Alternative Desktop

Labs.mwrinfosecurity.com | © MWR Labs 45

Public

EXTERNAL

Kernel

• Huge attack surface

– Core kernel

• 450 system calls

– Win32k.sys – Graphical subsystem

• >900 system calls

• Incredibly complex, e.g.:

– Font parsing in the kernel

– Kernel mode callbacks

Labs.mwrinfosecurity.com | © MWR Labs 46

Public

EXTERNAL

Kernel

• Reverse engineering?

Labs.mwrinfosecurity.com | © MWR Labs 47

Public

EXTERNAL

Kernel

• Fuzzing

• “Doesn’t Microsoft use Fuzzing?”

• A lot of presentations

– Font fuzzers

– System call fuzzers

• So is it even worth trying?

Labs.mwrinfosecurity.com | © MWR Labs 48

Public

EXTERNAL

Kernel - Fuzzing

“Secret” about fuzzing:

For any reasonably complex application

your Fuzzer can’t be complex enough

Labs.mwrinfosecurity.com | © MWR Labs 49

Public

EXTERNAL

Kernel - Fuzzing

If your Fuzzer stops finding vulnerabilities:

1. You found all the bugs

2. Your current Fuzzer needs improving

Labs.mwrinfosecurity.com | © MWR Labs 50

Public

EXTERNAL

Kernel - Fuzzing

• Let’s look at system calls

• Previous attempts

– Focus on single system calls

• NtSystemCall(“aaaaaa”, “x”, 0xffffffff);

– Not series of calls

Labs.mwrinfosecurity.com | © MWR Labs 51

Public

EXTERNAL

Kernel - Fuzzing

• We just have to have a more complex Fuzzer

• A few ideas

– Creating valid Menu structures

– User mode callback hooking

– Knowledge about arguments

– Everything is a Handle

– HMENU, HFONT, HCURSOR, HWND

Labs.mwrinfosecurity.com | © MWR Labs 52

Public

EXTERNAL

Kernel - Fuzzing

Labs.mwrinfosecurity.com | © MWR Labs 53

Public

EXTERNAL

Kernel – Fuzzing Results
Jazz

Hands!

Labs.mwrinfosecurity.com | © MWR Labs 54

Public

EXTERNAL

Kernel - Fuzzing

• Automation Tricky

– Important

– VM’s with Snapshots

• Reproducibility

– Logging

• Extremely slow

– We worked from crash dumps

Labs.mwrinfosecurity.com | © MWR Labs 55

Public

EXTERNAL

Kernel – The vulnerability

• Crash dump:

nt!ExpReleasePoolQuota+0x21:

82aca424 8a07 mov al,byte ptr [edi] ds:0023:00410041=??

00000008 ffb80530 00000000 nt!ExpReleasePoolQuota+0x21

fd6b7168 00000000 ffb80530 nt!ExFreePoolWithTag+0x779

ffb80530 00000000 2ba8aa2a win32k!UnlinkSendListSms+0x70

00243c78 0000000d 00000008 win32k!xxxInterSendMsgEx+0xd0a

fe243c78 0000000d 00000008 win32k!xxxSendMessageTimeout+0x13b

fe243c78 0000000d 00000008 win32k!xxxSendMessageEx+0xec

fe243c78 0000000d 00000008 win32k!NtUserfnOUTSTRING+0xa7

0001037c 0000000d 00000008 win32k!NtUserMessageCall+0xc9

0001037c 0000000d 00000008 nt!KiFastCallEntry+0x12a

Labs.mwrinfosecurity.com | © MWR Labs 56

Public

EXTERNAL

Kernel – The vulnerability

• System call to trigger crash:

NtUserMessageCall(HWND,

 WM_GETTEXT,

 0x8, // Buffer size in kernel !

 ptr, // user mode

 0x0,

 0x2b3,

 0x2); // ASCII boolean/flag

Labs.mwrinfosecurity.com | © MWR Labs 57

Public

EXTERNAL

Kernel – The vulnerability

• Requirements for trigger

– Message to be send between threads

• ASCII window object as receiving thread (HWND)

– ASCII boolean value has to be even (not 0x0)

– WM_GETTEXT response larger than (size/2)

Labs.mwrinfosecurity.com | © MWR Labs 58

Public

EXTERNAL

Kernel – The vulnerability

• The allocation:

• Algorithm to figure out buffer allocation

– Based on message type and window types

– Fairly complex

• Last argument for Message sending treated as Boolean!

win32k!xxxInterSendMsgEx

win32k!xxxSendMessageTimeout+0x13b

win32k!xxxSendMessageEx+0xec

win32k!NtUserfnOUTSTRING+0xa7

win32k!NtUserMessageCall+0xc9

Labs.mwrinfosecurity.com | © MWR Labs 59

Public

EXTERNAL

Kernel – The vulnerability
• The copy operation:

• Algorithm to figure out copy type

• Last argument for Message sending treated as FLAG!

– 0x0 = strncpycch

– 0x1 = MBToWCSEx

– 0x2 = strncpycch …

win32k!CopyOutputString

win32k!SfnOUTSTRING+0x336

win32k!xxxSendMessageToClient+0x175

win32k!xxxReceiveMessage+0x3b8

win32k!xxxRealInternalGetMessage+0x252

win32k!NtUserGetMessage+0x3f

Labs.mwrinfosecurity.com | © MWR Labs 60

Public

EXTERNAL

Pool Allocator with Quota Overflow Exploitation

• Buffer layout:

• Blocks 16 byte aligned (without Meta and TAG)

Meta TAG Data
EPROCESS

PTR

Labs.mwrinfosecurity.com | © MWR Labs 61

Public

EXTERNAL

Pool Allocator with Quota Overflow Exploitation

• Buffer layout:

• We control the allocation size

• Buffer write will be (2*size)

– ASCII to Widechar conversion

Meta TAG Data
EPROCESS

PTR

Labs.mwrinfosecurity.com | © MWR Labs 62

Public

EXTERNAL

Pool Allocator with Quota Overflow Exploitation

• Buffer layout:

• Good buffer size: 8

• data + quota ptr = 12 + 4 byte padding = 16 (aligned)

• Overwrite (2*size): corrupt padding and quota ptr (no further heap
corruption)

Meta TAG Data
EPROCESS

PTR

Labs.mwrinfosecurity.com | © MWR Labs 63

Public

EXTERNAL

Pool Allocator with Quota Overflow Exploitation

• Buffer layout:

• We are limited to ASCII (not UTF8) -> Widechar

• Quota ptr can be 0x00xx00yy

• Fake Quota structure in user mode

Meta TAG
00aa00aa00aa00aa

00aa00aa00aa00aa

00xx00yy

Labs.mwrinfosecurity.com | © MWR Labs 64

Public

EXTERNAL

Quota Process Overwrite Exploitations

• See “Kernel Pool Exploitation on Windows 7”, Tarjei Mandt

• Place in user mode:

kd> dt ntkrpamp!_EPROCESS

 ...

 +0x0d4 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK

 ...

Labs.mwrinfosecurity.com | © MWR Labs 65

Public

EXTERNAL

Quota Process Overwrite Exploitations

EPROCESS points to:

typedef struct _EPROCESS_QUOTA_BLOCK {

 EPROCESS_QUOTA_ENTRY QuotaEntry[3];

 LIST_ENTRY QuotaList;

 ULONG ReferenceCount;

 ULONG ProcessCount;

} EPROCESS_QUOTA_BLOCK, *PEPROCESS_QUOTA_BLOCK;

Labs.mwrinfosecurity.com | © MWR Labs 66

Public

EXTERNAL

Kernel - Exploitation

• We could have _EPROCESS_QUOTA_BLOCK in user mode

• ReferenceCount or ProcessCount are decremented on free

• If either == 0 we get code execution

• However this won’t be in the context of the syscall

– Painful to exploit

• What can we decrement in kernel mode?

Labs.mwrinfosecurity.com | © MWR Labs 67

Public

EXTERNAL

Quota Process Overwrite Exploitations
kd> dt win32k!tagWND

 +0x000 head : _THRDESKHEAD

 +0x014 state : Uint4B

 +0x014 bHasMeun : Pos 0, 1 Bit ...

 +0x014 bServerSideWindowProc : Pos 18, 1 Bit

 +0x014 bAnsiWindowProc : Pos 19, 1 Bit

 +0x014 bBeingActivated : Pos 20, 1 Bit

 ...

 +0x014 bMaximizesToMonitor : Pos 30, 1 Bit

 +0x014 bDestroyed : Pos 31, 1 Bit

 ...

 +0x060 lpfnWndProc : Ptr32 long

 ...

Labs.mwrinfosecurity.com | © MWR Labs 68

Public

EXTERNAL

Kernel - Exploitation

• Create a new Window

• Specify custom user mode window procedure

• Get window kernel address through shared table in GDI

• Point EPROCESS_QUOTA_BLOCK to state of window object

• Trigger exploit a few times (100% reliable)

• => bServerSideWindowProc will be True 

Labs.mwrinfosecurity.com | © MWR Labs 69

Public

EXTERNAL

Kernel - Exploitation

• The Window procedure:

 WORD um=0;

 __asm {

 mov ax, cs

 mov um, ax

 }

 if(um == 0x1b) {

 // USER MODE

 } else {

 // KERNEL MODE CODE EXECUTION

Labs.mwrinfosecurity.com | © MWR Labs 70

Public

EXTERNAL

Kernel - Exploitation

• "Easy local Windows Kernel exploitation" by Cesar Cerrudo

– Nulling out ACLs

• Ended up nulling ACL of winlogon.exe

– System Process

– User Desktop

• Then CreateRemoteThread into winlogon.exe

Labs.mwrinfosecurity.com | © MWR Labs 71

Public

EXTERNAL

Kernel - Shellcode
 mov eax, hwnd // WND

 mov eax, [eax+8] // THREADINFO

 mov eax, [eax] // ETHREAD

 mov eax, [eax+0x150] // KPROCESS

 mov eax, [eax+0xb8] // flink

 procloop:

 lea edx, [eax-0xb8] // KPROCESS

 mov eax, [eax]

 add edx, 0x16c // module name

 cmp dword ptr [edx], 0x6c707865 // expl for explorer.exe

 jne procloop

 sub edx, 0x170

 mov dword ptr [edx], 0x0 // NULL ACL

Labs.mwrinfosecurity.com | © MWR Labs 72

Public

EXTERNAL

Demo

Labs.mwrinfosecurity.com | © MWR Labs 73

Public

EXTERNAL

Thanks For Listening

Questions?

